

Evidence for longitudinal polarized $W^{\pm}W^{\pm}jj$ -EW scattering with ATLAS

59th Rencontres de Moriond 2025

Max Stange on behalf of the ATLAS Collaboration

[Phys. Rev. Lett. 123 (2019) 161801]

Polarization States

Importance of $W_I^{\pm}W_I^{\pm} \rightarrow W_I^{\pm}W_I^{\pm}$

 Higgs Goldstone bosons result in longitudinal polarized vector bosons:

• Longitudinal $W_L^{\pm}W_L^{\pm} \rightarrow W_L^{\pm}W_L^{\pm}$ would violate unitarity if Higgs coupling deviates from SM prediction

 $\Rightarrow W_L^{\pm} W_L^{\pm} \rightarrow W_L^{\pm} W_L^{\pm}$ is a unique opportunity to probe electroweak symmetry-breaking

Rare, Rarer, $W_L^{\pm}W_L^{\pm}$

Standard Model Production Cross Section Measurements

• $W^{\pm}W^{\pm} \rightarrow W^{\pm}W^{\pm}$ is

Signature of $W^{\pm}W^{\pm}jj$ EW

- Exactly two same-charged leptons
- At least **two well-separated jets** with $m_{ii} > 500$ GeV
- Missing transverse momentum $E_T^{miss} \ge 30 \text{ GeV}$

[Phys. Rev. Lett. 123 (2019) 161801]

Analysis Baseline

- ATLAS Run 2 dataset with 140 fb⁻¹ at 13 TeV
- Chosen signature suppresses $W^{\pm}W^{\pm}jj$ QCD

Mostly vector boson scattering

- 2023: Differential measurement and interpretation [JHEP 04 (2024) 026]
 - Cross-section measured with 10% accuracy

Access Polarization Information

- W^{\pm} polarization determines decay angle
- \blacksquare BUT: Cannot access W^{\pm} rest frame since the two neutrinos are not reconstructable

Simulate full event kinematic of polarization states predicted by SM

How to Distinguish Polarization States?

Maximize sensitivity through combination in DNN!

Polarization states differ in di-lepton and jet kinematic

DNN trained to split signal region in 3 regions with increasing $W^{\pm}W^{\pm}jj$ EW purity

Single Boson Polarization $W_I^{\pm}W^{\pm}$

- Significance of 3.3 σ for $W_L^{\pm}W^{\pm}jj$ (expected 4.0 σ)
- First evidence for longitudinal polarization in vector boson scattering
- Measured cross-section in agreement with the Standard Model
- Dominated by statistical uncertainty

Prediction	Measured $\sigma \mathcal{B}$ (fb)	Ţ	Jncertainty breakdown (fb)
1.18 ± 0.29	0.88 ± 0.30 (tot.)	±0.28 (stat.)	$\pm 0.08 \pmod{\text{mod. syst.}} \pm 0.05 $

Double Boson Polarization $W_I^{\pm}W_I^{\pm}$

- 95% CL upper limit of 0.45 fb (expected 0.70 fb)
- Most stringent limit for fully **longitudinally polarized** $W^{\pm}W^{\pm}jj$ **EW**
- Measured cross-section in agreement \bullet with the Standard Model
- Dominated by statistical uncertainty

Prediction	Measured $\sigma \mathcal{B}$ (fb)	Ţ	Jncertainty breakdown (fb)
0.29 ± 0.07	0.01 ± 0.21 (tot.)	±0.20 (stat.)	$\pm 0.05 \pmod{\text{mod. syst.}} \pm 0.02 \exp{\text{mod. syst.}}$

Summary

[arXiv:2503.11317]

- $W_L^{\pm}W_L^{\pm} \rightarrow W_L^{\pm}W_L^{\pm}$ is unique opportunity to probe EWS
- State-of-the-art polarization prediction:
 - Multi-jet merging in matrix element [JHEP04(2024) 001]
 - NLO EW correction [JHEP11(2024) 115]
- First evidence for longitudinal polarization in vector boson scattering
- Most stringent limits for $W_L^{\pm}W_L^{\pm}jj$ EW (1.5 x SM)
- Dominated by statistical uncertainty

Additional Material

Feynman Diagrams $W^{\pm}W^{\pm}jj$ **EW** ~ α_{EW}^{6}

Feynman Diagrams $W^{\pm}W^{\pm}jj$ **QCD** $\sim \alpha_{EW}^4 \alpha_{QCD}^2$

Analysis Strategy

Object Selection

	baseline	signal
Identification:	LooseLH	TightLH
Kinematic Acceptance:	$p_T > 4.5 \mathrm{GeV}$	$p_T > 27 \mathrm{GeV}$
Geometrical Acceptance:	n < 2.47	$ \eta < 2.47,$
		excluding $1.37 \le \eta \le 1.52$
Longitudinal Impact parameter:	$ z_0 \times \sin \theta < 0.5 \mathrm{mm}$	$ z_0 imes \sin \theta < 0.5 \mathrm{mm}$
Transverse Impact parameter:	$\left \frac{d_0}{\sigma_{d_0}}\right < 5$	$\left \frac{d_0}{\sigma_{d_0}}\right < 5$
Isolation Requirement:	-	Gradient
Author requirement:	_	1
Charge-flip rejection:	-	ECIDS

	Jets	
	baseline	signal
Clustoring	anti- k_t algorithm	anti- k_t algorithm
Clustering:	with $R = 0.4$	with $R = 0.4$
Kinematic Acceptance:	$p_T > 20 \mathrm{GeV}$	$p_T > 25 \mathrm{GeV}$
Geometrical Acceptance:	$ \eta < 4.5$	$ \eta < 4.5$
Vortor Matching		JVT for $p_T < 60 \mathrm{Ge}$
vertex matching.	-	and $ \eta < 2.4$

Muons

	baseline	signal
Identification:	Loose	Medium
Kinematic Acceptance:	$p_T > 3 \mathrm{GeV}$	$p_T > 27 \mathrm{Ge}$
Geometrical Acceptance:	$ \eta < 2.7$	$ \eta < 2.5$
Longitudinal Impact parameter:	$ z_0 \times \sin \theta < 1.5 \mathrm{mm}$	$ z_0 \times \sin \theta < 0$
Transverse Impact parameter:	$\left \frac{d_0}{\sigma_{d_0}}\right < 15$	$\left \frac{d_0}{\sigma_{d_0}}\right < 3$
Isolation Requirement:	_	FixedCutPflow

Event Selection

Measure $W^{\pm}W^{\pm}jj$ polarization	EW	Constrain backgrounds	C C t	onstrain and orrect $W^{\pm}Z$ background
Requirement	SR	Low- <i>m</i> _{jj} CR	WZ CR	
Leading and subleading lepton p_T Electron $ \eta $ Muon $ \eta $	< 2.47 (> 27 GeV (1.37 in <i>ee</i>), excluding 1. < 2.5	$37 \le \eta \le 1.52$	
Leading (subleading) jet $p_{\rm T}$ Additional jet $p_{\rm T}$ Jet $ \eta $		> 65 (35) GeV > 25 GeV < 4.5		
$\begin{array}{c} m_{\ell\ell} \\ E_{\rm T}^{\rm miss} \\ \end{array}$ Charge misid. $Z \rightarrow ee$ veto	$ m_{ee} $	> 20 GeV > 30 GeV $- m_Z > 15 \text{ GeV}$		
b-jet veto $N_{\text{veto leptons}}$ $m_{\ell\ell\ell}$	= 0	$p_{\rm et}^{b-\rm jet} = 0, p_{\rm T}^{b-\rm jet} > 20 \text{ GeV}, = 0$	$\eta^{b\text{-jet}} < 2.5$ = 1 , $p_{\text{T}} > 15$ Ge > 106 GeV	V
$m_{ m jj}$ $ \Delta y_{ m jj} $	> 500 GeV	200 < m _{jj} < 500 GeV > 2	> 200 GeV	

Analysis Setup

- ATLAS Run 2 dataset with 140 fb⁻¹ at 13 TeV
- Monte Carlo simulation:
 - $W^{\pm}W^{\pm}jj$: EW, Int, and QCD
 - $W^{\pm}Z$: EW and QCD
 - Other minor prompt backgrounds
- Data-driven estimation:
 - Conversions: charge-flip of leptons
 - Non-prompt: objects faking leptons

Every Prediction Can Be Further Improved

DNN trained to correct

- Missing diagrams with hadronically decaying W^{\pm}
- Contribution from off-shell W^{\pm}

Recent theory calculations [JHEP11(2024) 115]

Polarization-dependent NLO EW contributions

Bin Optimization

- Likelihood $\mathscr{L}(\mu, \mu_T, \vec{a})$ with longitudinal pol. signal strength μ , transversal pol. strength μ_T , and normalization nuisance parameters \vec{a}
- Optimise binning for test statistic $q_{0,A} = -2\ln\left(\mathscr{L}(0,\hat{\mu}_T,\hat{\vec{a}})/\mathscr{L}(1,1,\vec{1})\right)$
- Start with 2D histogram with 20x20 bins
- Split 2D histogram into several 1D histograms each with optimized binning

Postfit Yields for $W_L^{\pm}W^{\pm}jj$ **EW Measurement**

Process	Region 0 to 0.3	Region 0.3 to 0.7	Region 0.7
$W_{\rm L}^{\pm}W_{\rm L}^{\pm}jj$	1.8 ± 0.7	5.6 ± 1.9	8.3 ± 2.8
$W_{\mathrm{L}}^{\pm}W_{\mathrm{T}}^{\pm}jj$	6.0 ± 2.5	17.8 ± 6.2	$25.7 \pm 8.$
$W_{\mathrm{T}}^{\pm}W_{\mathrm{T}}^{\pm}jj$	18.4 ± 4.4	64.0 ± 10.0	111.9 ± 14
$QCDW^{\pm}W^{\pm}jj$	14.4 ± 4.1	12.5 ± 3.5	2.6 ± 0.8
Int $W^{\pm}W^{\pm}jj$	2.3 ± 0.1	6.0 ± 0.2	4.8 ± 0.1
QCD $W^{\pm}Zjj$	33.3 ± 2.6	20.3 ± 1.6	4.5 ± 0.4
$EW W^{\pm}Zjj$	3.3 ± 0.1	6.2 ± 0.2	5.5 ± 0.2
Non-prompt	31.2 ± 4.3	20.2 ± 2.9	$10.4 \pm 3.$
Conversions	14.6 ± 3.7	6.2 ± 1.8	1.6 ± 0.5
Other prompt	3.7 ± 0.7	2.6 ± 0.6	0.8 ± 0.2
Total SM	129 ± 7	161 ± 10	176 ± 13
Data	142	158	175
	L		

Postfit Kinematic Distributions for $W_L^{\pm}W^{\pm}jj$ EW Measurement

Uncerta	Intles		$W_L^{\pm}W^{\pm}jj$ EW measurement	E
			Source of uncertainty	$\Delta \sigma /$
			Experimental	
Process Measur	red $\sigma \mathcal{B}$ (fb)	Uncertainty breakdown (fb)	Lepton calibration Jet energy and $E_{\rm T}^{\rm miss}$ scale and resolution Pileup modeling Background, misid. leptons Background, charge misrec. Background modeling statistical	
$W_{\rm L}^{\pm}W_{\rm L}^{\pm}jj = 0.01 \pm$	$0.21 \text{ (tot.)} \pm 0.20 \text{ (s}$	tat.) $\pm 0.05 \pmod{\text{mod. syst.}} \pm 0.02 \pmod{\text{syst.}}$	Luminosity Modeling	
$ \frac{W_{\rm T}^{\pm}W^{\pm}jj}{W_{\rm L}^{\pm}W^{\pm}jj} = 3.39 \pm 0.88 \pm 0.88 \pm 0.88 \pm 0.89 \pm 0.89 \pm 0.000 \pm 0.000 \pm 0.0000 \pm 0.0000 \pm 0.0000 \pm 0.00000 \pm 0.00000 \pm 0.00000000$	0.35 (tot.) ± 0.30 (s 0.30 (tot.) ± 0.28 (s 0.32 (tot.) ± 0.30 (s	tat.) $\pm 0.11 \pmod{\text{syst.}} \pm 0.14 \exp{\text{syst.}}$ tat.) $\pm 0.08 \pmod{\text{syst.}} \pm 0.05 \exp{\text{syst.}}$ tat.) $\pm 0.09 \pmod{\text{syst.}} \pm 0.10 \exp{\text{syst.}}$	$\frac{(0,0)}{(0,0)} = \frac{W^{\pm}W^{\pm}jj}{W^{\pm}jj} EW + QCD uncertaintiesBackground, WZ scale, PDFs & \alpha_sBackground, WZ reweightingSmall background normalizationsNormalization factors$	
			Experimental and modeling	
			Total	

