

59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"

Run 3 Standard Model cross section measurements

Carlos Vico Villalba on behalf of the CMS and ATLAS collaborations

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Introduction. Evolution of measurements at the LHC

- 138 fb⁻¹ (2.76.5.02.7.8.13.13.6 TeV otjet) = 4.2e+09 fb PED N4 (032011 (2011 SMP.20.034 7 TeV PRE 10 (2011) 132 PRE 112 (2014) 19 PEP 03 (2015) 02 SMP-20-004 HEP 10 (2011) 1 PRI 125 151802 PEP 10 (2021) 1 o(VEF W) = 4.2e+02 fb 5 fb⁻¹ 20 fb⁻¹ 36 fb⁻¹ 138 fb 20 fb⁻¹ 20 fb⁻¹ 138 fb 138 fb 138 fb 137 fb 20 fb⁻¹ EPSC 78 (2018) 5 a [fb] August 2023
- A lot of aspects in electroweak (EW) physics covered during Run 2.
 - ~ 140 fb⁻¹ of data recorded by both
 ATLAS and CMS.
- July 2022: the new Run 3 of the LHC started.
 - At a new center of mass energy of 13.6 TeV!
- LHC collaborations are targeting (once again!) the largest ever recorded dataset in High Energy Physics.
- The largest dataset comes with great responsibility...
 - Lessons from Run 2.
 - Expected. Stat unc reduced by factor ~V2.
 - Improved analysis techniques (better systematic).
 - Improved detectors.

Introduction. Evolution of measurements at the LHC

- Lot of aspects in electroweak (EW) physics covered during Run 2.
 - ~ 140 fb⁻¹ of data recorded by both
 ATLAS and CMS.
- July 2022: the new Run 3 of the LHC started.
 - At a new center of mass energy of 13.6 TeV!
- LHC collaborations are targeting (once again!) the largest ever recorded dataset in High Energy Physics.

- The largest dataset comes with great responsibility...
 - Lessons from Run 2.
 - Expected. **Stat unc reduced** by factor **~V2.**
 - Improved analysis techniques (**better systematic**).
 - Improved detectors.

It is **crucial for the LHC** physics programme to continue producing scientific results

Introduction. Evolution of measurements at the LHC

- Lot of aspects in electroweak (EW) physics covered during Run 2.
 - ~ 140 fb⁻¹ of data recorded by both
 ATLAS and CMS.
- July 2022: the new Run 3 of the LHC started.
 - At a new center of mass energy of 13.6 TeV!
- LHC collaborations are targeting (once again!) the largest ever recorded dataset in High Energy Physics.

Plot from CMS. Note ATLAS has also extensively explored the EW sector during Run 2!

- The largest dataset comes with great responsibility...
 - Lessons from Run 2.
 - Expected. **Stat unc reduced** by factor **~V2.**
 - Improved analysis techniques (**better systematic**).
 - Improved detectors.

It is **crucial for the LHC** physics programme to continue producing scientific results

In my talk: focus on EW sector measurements by ATLAS and CMS with Run 3 data.

Single vector boson production measurements

• Single-Z and W boson production is key for proper lepton calibration.

- Z boson production:
 - Measured by both CMS (<u>SMP-22-017</u>) and ATLAS (<u>PLB. 854 (2024) 138725</u>).
- W boson production:
 - Measured by ATLAS (<u>PLB. 854 (2024)</u> <u>138725</u>), and recently by CMS (<u>arXiv:</u> <u>2503.09742</u> \rightarrow superseeds **SMP-22-017**).

• Measurement of the Z and W boson production cross section at 13.6 TeV.

Good agreement with SM with competitive final uncertainty

Carlos Vico Villalba (University of Oviedo – ICTEA) 59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"

Diboson production

Diboson production measurements

- Diboson production processes are very interesting because of many reasons
- From a theoretical point of view:
 - Relevant backgrounds in Higgs measurements.
 - Sensitive to triple gauge couplings.
 - Boson polarization effects
 - Sensitive to proton PDFs
- From a experimental point of view
 - Relatively large cross section
 - Very clean final states.
 - Already accessible with Run 3 data.

Diboson measurements at 13.6 TeV

$WW \to e^{\pm} \mu^{\mp}$
CMS Experiment at the LHC. CERN Data recorded: 2022-Sep-30 08:36:07:59:4192 GMT Run / Event / LS: 359612 / 7743753 / 11
Run 3 provides standard model with new victory energy frontier

WW cross section measurements – PLB. 861 (2025) 139231

 \geq 2-jet fraction

 $0.096 \pm 0.011 (0.008, 0.008)$

Carlos Vico Villalba (University of Oviedo – ICTEA) 59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"

 $0.119 \pm 0.011 (0.008, 0.008)$

Diboson measurements at 13.6 TeV

ZZ cross section measurements – PLB. 855 (2024) 138764

- Rarest diboson production mechanism \rightarrow target topology is $ZZ \rightarrow 4\ell$.
 - The **measurements** are **reported in** a **fiducial volume** that mimics the requirements of the signal region.
 - The measurement is **also extrapolated to** a less theoretically constrained **total volume**.
- The ZZ cross section is extracted through a cut & count procedure.

20 GeV	160 $ATLAS$		Fiducial phase space	Total lepton phase space	Source	Relative uncertainty (%)
Entries /	140 ZZ → 41 Irreducible Reducible 120 Wincertainty 1	Muon selection Electron selection	Bare, $p_{\rm T} > 5 \text{ GeV}$, $ \eta < 2.5$ Dressed, $p_{\rm T} > 7 \text{ GeV}$, $ \eta < 2.47$	Born Born	Data statistical uncertainty MC statistical uncertainty	4.2 0.3 Better
		Four-lepton signature Lepton kinematics	≥ 2 SFOC pairs $p_{\rm T} > 27/10$ GeV $\Delta R(\ell, \ell) > 0.05$	\geq 2 SFOC pairs	Pile-up Lepton momentum	2.2calibration to0.3come in later3.7Pup 21
	60 40	Low-mass $\ell^+ \ell^-$ veto Z mass window	$m_{ij} > 5 \text{ GeV}$ $66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$	$m_{ij} > 5 \text{ GeV}$ $66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$	Background Theoretical uncertainty	1.6 1.0
		ZZ on-shell	$m_{4l} > 180 \text{ GeV}$		Total	6.3
/ Pred.	1.25	Me	easurement	MC p	rediction MATRIX + E	EW ZZjj
Data	0.75 0.5 200 300 400 500 600 700 m ₄₁ [GeV]	Fiducial 36 Total 16	$.7 \pm 1.6(\text{stat}) \pm 1.5(\text{syst}) \pm $ $.8 \pm 0.7(\text{stat}) \pm 0.7(\text{syst}) \pm $	0.8(lumi) fb 36.8 0.4(lumi) pb 17.0	$^{+4.3}_{-3.5}$ fb 36.5 ± 0.7 fb $^{+1.9}_{-1.4}$ pb 16.7 ± 0.5 pb	

ZZ cross section measurements – PLB. 855 (2024) 138764

• In addition to the inclusive cross section measurements, differential unfolding of observables is performed using background subtraction techniques.

Diboson measurements at 13.6 TeV

WZ cross section measurements – <u>Arxiv. 2412.02477</u> Accepted by JHEP

CMS

- In its multileptonic final state, this process has:
 - Very clean final state
 - Reasonably high statistics and purity
- The analysis is performed in these final state topologies (WZ $\rightarrow 3\ell + \nu$).

Region	N_ℓ	$p_{\mathrm{T}}\{\ell_{Z}^{1},\ell_{Z}^{2},\ell_{\mathrm{W}}(\ell_{3}),(\ell_{4})\}$	NOSSF	$ m(\ell_Z^1,\ell_Z^2)-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	$N_{ m b \ tag}$	$\min(m(\ell,\ell'))$	$m(\ell_Z^1,\ell_Z^2,\ell_W(\ell_3))$
		(GeV)		(GeV)	(GeV)		(GeV)	(GeV)
SR	=3	>{25,15,25}	≥ 1	<15	>35	=0	$>\!\!4$	>100
ZZ CR	=4	>{25, 15, 25, 15}	≥ 1	<15		=0	>4	> 100
tīZ CR	=3	>{25,15,25}	≥ 1	<15	>35	>0	>4	>100
$X\gamma CR$	=3	>{25,15,25}	≥ 1		\leq 35	=0	>4	<100

- One signal region (SR).
- The main backgrounds (ZZ, ttZ and conversions) are controlled with three additional control regions (CRs).

WZ cross section measurements – Arxiv. 2412.02477 Accepted by JHEP

• The analysis also serves as a **proof** of the **performance of multiple objects in CMS** during Run 3!

Carlos Vico Villalba (University of Oviedo – ICTEA) 59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"

CMS

Total

Dressed (e, μ , τ)

- The WZ cross section is extracted from a maximum likelihood **fit to** the number of **observed events** in different lepton categories.
 - The SR and all CRs are considered in the fit. \bigcirc

Measurements are reported in **fiducial** and **total** regions per lepton flavour channel.

Fiducial

Dressed (e, μ)

Region

Lepton definition

Carlos Vico Villalba (University of Oviedo – ICTEA) 59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"

WWZ and ZH cross sections at 13 and 13.6 TeV

WWZ and ZH cross section measurements – <u>SMP-24-015</u>

NEW

- Events are categorized according to the flavors of the W-candidate leptons.
 - 2 channels
 - Opposite and same-flavour
- A BDT is used to further distinguish WWZ, ZH and other backgrounds.
 - (8 bins for Run 2) x 2 channels
 - (4 bins for Run 3) x 2 channels
- The post-fit yields are extracted from a maximum likelihood fit to signal region and other control regions.

Run 3

WWZ and ZH cross section measurements – <u>SMP-24-015</u>

Conclusions (I)

> 15 years of SM cross section measurements at LHC!

Excellent precision achieved, good agreement with the SM

 $\overline{\mathbf{Q}} pp \to X$ 7 TeV, 20 ub⁻¹, Nat, Commun, 2 (2011) 463 8 TeV, 500 ub⁻¹, PLB 761 (2016) 158 13 TeV, 340 µb⁻¹, EPJC 83 (2023) 441 $\mathbb{Z} pp \to W \quad \nabla pp \to Z/\gamma^*$ 2.76 TeV, 4 pb⁻¹, EPJC 79 (2019) 5 TeV, 255 pb⁻¹, arXiv:2404.06204 7 TeV, 4.6 fb⁻¹, EPJC 77 (2017) 367 8 TeV, 20.2 fb⁻¹, JHEP 02 (2017) 117 (for Z) 8 TeV, 20.2 fb⁻¹, EPJC 79 (2019) 760 (for W) 13 TeV, 338 pb⁻¹, arXiv:2404.06204 13.6 TeV, 29 fb-1, PLB 854 (2024) 138725 $\overline{Q} pp \rightarrow t\overline{t}$ 5 TeV, 257 pb⁻¹, JHEP 06 (2023) 138 7 & 8 TeV, EPJC 74 (2014) 3109 13 TeV, 140 fb⁻¹, JHEP 07 (2023) 141 13.6 TeV, 29 fb⁻¹, PLB 848 (2024) 138376 $\overrightarrow{q} pp \rightarrow tq$ 7 TeV, 4.6 fb⁻¹, PRD 90, 112006 (2014) 8 TeV, 20.3 fb⁻¹, EPJC 77 (2017) 531 13 TeV, 3.2 fb⁻¹, JHEP 1704 (2017) 086 $\overline{O} pp \rightarrow H$ 7 & 8 TeV, EPJC 76 (2016) 6 13 TeV, 139 fb⁻¹, JHEP 05 (2023) 028 13.6 TeV, 31.4 fb⁻¹, EPJC 84 (2024) 78 $\overline{O} pp \rightarrow WW$ 7 TeV, 4.6 fb⁻¹, PRD 87, 112001 (2013) 8 TeV, 20.3 fb⁻¹, JHEP 09 029 (2016) 13 TeV, 36.1 fb⁻¹, EPJC 79 (2019) 884 $pp \rightarrow WZ$ 7 TeV. 4.6 fb⁻¹, EPJC 72 (2012) 2173 8 TeV, 20.3 fb⁻¹, PRD 93, 092004 (2016) 13 TeV, 36.1 fb⁻¹, EPJC 79 (2019) 535 $\overline{\Delta} pp \rightarrow ZZ$ 7 TeV, 4.6 fb⁻¹, JHEP 03 (2013) 128 8 TeV, 20.3 fb⁻¹, JHEP 01 (2017) 099 13 TeV, 36,1 fb⁻¹, PRD 97 (2018) 032005 13.6 TeV, 29 fb⁻¹, PLB 855 (2024) 138764

Conclusions (II)

- The CMS and ATLAS collaborations are analyzing Run 3 data
 - Physics analyses ramping up
 - "Only" using ~10% of the total expected Run 3 dataset
 - Some ``serious" competition with Run~2 analyses

- Run 2 + Run 3 data samples will be larger or comparable to Run 4!
- It will be our main dataset until ~2032.

 I've missed many other interesting results from both collaborations that anyone can checkout at the <u>ATLAS</u> and <u>CMS</u> webpages!

Stay tuned for more Run 3 Results!

Backup

Z cross section measurement at 13.6 TeV (CMS) - SMP-22-017

- A measurement of the Z boson production cross section was performed by the CMS experiment at the beginning of Run 3.
- **Goal:** to measure the Z boson production rate at a brand new center of mass energy regime.
- Dataset used: first 5.04 fb⁻¹ collected by CMS during
 2022 data taking.
- Target topology: $Z \rightarrow \mu^+ \mu^-$

- **Object selection:** optimized for $Z \rightarrow \mu^+ \mu^-$.
 - Exactly two reconstructed muons passing Ο "tight" quality criteria [JINST 13 (2018) <u>P06015</u>].
 - Opposite sign \bigcirc
 - p_T > 25 GeV, $|\eta|$ < 2.4 Ο
 - $m_{\mu\mu} \in [60, 120] \text{ GeV}$ Inclusive in jets and b tags. 0
 - Ο
- **Corrections:** particularly delicate in early analyses.
 - Muon efficiency Ο
 - Scale and energy. Ο
 - Trigger prefiring. Ο
 - Pileup Ο
- **Strategy:** maximum likelihood fit to the $m_{\mu\mu}$ distribution.

Z cross section measurement at 13.6 TeV (CMS) – SMP-22-017

- Total cross sections times branching ratio are presented.
 - Measurement dominated by systematics.
- Well in agreement with SM.

$$\begin{split} (\sigma_{\rm fid}\mathcal{B})_{\rm measured} &= (0.7635 \pm 0.0004({\rm stat}) \pm 0.0069({\rm syst}) \pm 0.0176({\rm lumi}))\,{\rm nb}, \\ (\sigma_{\rm fid}\mathcal{B})_{\rm predicted} &= (0.7666 \pm 0.0065({\rm PDF})^{+0.0021}_{-0.0045}({\rm scale}))\,{\rm nb}, \end{split}$$

$$\begin{split} (\sigma_{\rm tot}\mathcal{B})_{\rm measured} &= (2.010 \pm 0.001({\rm stat}) \pm 0.018({\rm syst}) \pm 0.046({\rm lumi}) \pm 0.007({\rm theo}))\,{\rm nb}, \\ (\sigma_{\rm tot}\mathcal{B})_{\rm predicted} &= (2.018 \pm 0.012({\rm PDF})^{+0.018}_{-0.023}({\rm scale}))\,{\rm nb}, \end{split}$$

Vector boson production

- Isolated or simultaneous production of Z and W bosons at the LHC is part of the core programme.
- From a theoretical point of view:
 - Constraining of PDFs.
 - Anomalous triple gauge couplings.
 - Test perturbative effects of higher order contributions in QCD.
 - Parton shower effects.
- From a experimental point of view.
 - The LHC is a Z and W bosons factory

 $\sigma_{Z/W} \simeq 10^2$ nb.

- Ideal setup for calibration of many objects.
- Accessible already with rather low recorded luminosity.

- Measurement of W-boson pair production cross sections is an important test of the standard model.
 - First analysis using the full 2022 CMS dataset!
- The target topology is WW $\rightarrow e^{\pm}\mu^{\mp}$:
 - **One signal region** is defined to maximize signal purity.
 - Several control regions are already defined to constraint effect of main backgrounds.
 - **TOP, ZZ** $\rightarrow \tau \tau$, non prompt, WZ and ZZ $\rightarrow 4\ell$

Quantity	WW	One/two b tags	$Z \rightarrow \tau \tau$	Same-sign	Variable	WZ	ZZ
Number of tight leptons Additional loose leptons Lepton charges $p_T^{\ell \max}$ $p_T^{\ell \min}$ $p_T^{\ell \ell}$ $m_{\ell^{\ell}}$ Number of b-tagged jets N_j	>85 Ge — 0	Strictly 0 Opposite >25 Ge >20 Ge V >85 GeV 1/2 0/1/2/	2 = 2 $2 = 2$ $2 = 2$ $2 = 2$ $2 = 2$ $2 = 3$ $2 = 2$ $2 =$	Same >85 GeV — 0	Number of tight leptons Additional loose leptons Lepton p_T $ m_{\ell\ell} - m_Z $ $m_{3\ell}$ $m_{4\ell}$ p_T^{miss} Number of b-tagged jets	Strictly 3 >25/10/20 GeV <15 GeV >100 GeV >30 GeV 0	Strictly 4 0 >25/20/10/10 GeV (<i>p</i> _T ordered) <15 GeV (both pairs) >150 GeV

WW cross section measurements - PLB. 861 (2025) 139231

- The inclusive WW cross section is extracted from a maximum likelihood fit to the observed yields as a function of the number of jets.
- The fit is performed simultaneously to the signal region and all control regions.

CMS

WW cross section measurements - PLB. 861 (2025) 139231

 In addition to the inclusive cross section, fiducial and inclusive and normalized cross sections are reported.

Observable	Expected	Observed
Cross section (fb)	$812 \pm 34(31, 15)$	$813 \pm 35(32, 15)$
0-jet fraction	$0.648 \pm 0.015 (0.012, 0.009)$ $0.256 \pm 0.013 (0.008, 0.010)$	$0.640 \pm 0.016 (0.013, 0.009)$ $0.243 \pm 0.013 (0.009, 0.010)$
\geq 2-jet fraction	$0.096 \pm 0.011 (0.008, 0.008)$	$0.119 \pm 0.011 (0.008, 0.008)$

Fiducial definition in backup

- Differential measurements also performed.
 - Compared to alternative predictions.
 - First ever comparison with MiNNLO+PS generator in WW!
- Good agreement is observed

A quick word on CMS & ATLAS in Run 3

Both ATLAS and CMS have released several results (not covered in this talk) showing great **performance** \rightarrow Really critical for proper Run 3 analysis! 1/0.1] Check all these results and 900 ATLAS Online [pp $\sqrt{s} = 13.6 \text{ TeV}, 183 \text{ fb}^{-1}$ 800 more at <u>CMS & ATLAS</u> Luminosity calibration Luminosity 700E 2022: (μ)/μ_{MPV} = 42/50 2023: $\langle \mu \rangle / \mu_{MPV}^{MPV} = 51/58$ Source Correction (%) Uncertainty (%) 600 2024: (µ)/µ_{MPV} = 58/63 Calibration Total: $\langle \mu \rangle / \mu_{MPV} = 54/63$ 500 E 0.2 Beam current 3.4 Recorded 400E Ghost and satellite charges 0.2 0.4 2024 (13.6 TeV): <u> = 57 CMS 2023 (13.6 TeV): = 52 ATLAS lumi 0.1 0.1 2022 (13.6 TeV): = 46 Orbit drift 300 2018 (13 TeV): - 40 - 33 2017 (13 TeV): <u> = 38 Residual beam positions 0.0 0.3 0 2016 (13 TeV): qp = 27 2015 (13 TeV): «µ» -200 F Beam-beam effects 10 0.4 2012 (8 TeV); <u> = 21 1 (7 TeV): <µ> = 10 Length scale -1.0 0.1 100 Factorization bias 1.0 0.8 Scan-to-scan variation 0.5 off)13.6 TeV) = 80.0 mb 10 20 30 40 50 60 70 80 off[13 TeV] = 80.0 mb Bunch-to-bunch variation 0.1 off) P TelO = 73.0 mb Mean Number of Interactions per Crossing Cross-detector consistency 0.4 o⁽²⁾17 TeV) = 71.5 mb Muon performance ATLAS Integration HFET OOT pileup corrections 0.2 00 40 ŝ 99 00, t Efficiency 0.995 Cross-detector stability 0.5 Mean number of interactions per crossing Usage [GB] ATLAS Preliminary Cross-detector linearity 0.5 Calibration 1.2 Rel. 22 MT: 5.4 GB + 0.3 GB/Thread 0.8 35 Integration - Rel. 21 MP: 2.6 GB + 2.1 GB/Worker Total 1.4 **30**E Memory 0.99 ATLAS Preliminary 8.2 fb⁻¹ (13.6 TeV) 8.2 fb⁻¹ (13.6 TeV 25 Improved computing vs = 13.6 TeV, 29 fb CMS CMS muon ID / TrackerMuons Tight muon ID / TrackerMuons - Data 22 **ID** tracks 1.05 1.05 --- Simulation - Data --- Simulation 20 0.985 - MC Effic -p >10 GeV CMS Ш 15F Data / MC Stat only Sys

Stat_ 0.95 0.95 1.02 10 0.9 0.9 <u>Muon performance</u> 0.85 0.85 0.98 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 MC 0 10 12 14 16 Number of worker threads/processes

Carlos Vico Villalba (University of Oviedo – ICTEA) 59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"

WZ cross section measurements – Arxiv. 2412.02477 Accepted by JHEP

Category

All results are compared to latest theoretical predictions computed with MATRIX.

Fiducial region results

Carlos Vico Villalba (University of Oviedo – ICTEA) 59th Rencontres de Moriond on "Electroweak Interactions & Unified Theories"