Electroweak scale from conformal and custodial symmetry "Custodial Naturalness"

Andreas Trautner

based on:
PLB 861(2025) and arXiv:2502.09699
w/ **Thede de Boer** and Manfred Lindner

Moriond, EW
La Thuile

Supported by grants 2023.06787.CEECIND, 2024.01362.CERN, UIDP/00777/2020, UIDB/00777/2020

Outline

- Hierarchical scales in QFT and in the Standard Model
- General idea of Custodial Naturalness
- A minimal model
- Experimental tests

Disclaimer: For this 4D talk, scale invariance \sim conformal invariance.

• The Standard Model (SM) does not have a hierarchy problem.

[Bardeen '95]

Hierarchical scale separation

$$\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$$

The Standard Model (SM) does not have a hierarchy problem.

[Bardeen '95]

• Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$ may not be a problem, if there are no "hard" (read, classical) scales.

• The Standard Model (SM) does not have a hierarchy problem.

[Bardeen '95]

• Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$ may not be a problem, **if** there are no "hard" (read, classical) scales.

see, however, [Tavares, Schmaltz, Skiba '13]

Well-accepted mechanisms to shield Higgs from high scales:

- Supersymmetry,
- · Composite Higgs.

But: Nature is not close to supersymmetric, nor does the Higgs look like composite. Especially: No top partners observed!

• The Standard Model (SM) does not have a hierarchy problem.

[Bardeen '95]

• Hierarchical scale separation $\mu_{\rm EW} \sim m_h \sim v_{\rm EW} \ll \Lambda_{\rm high} \sim M_{\rm Pl}$ may not be a problem, if there are no "hard" (read, classical) scales.

see, however, [Tavares, Schmaltz, Skiba '13]

Well-accepted mechanisms to shield Higgs from high scales:

- Supersymmetry,
- Composite Higgs.

But: Nature is not close to supersymmetric, nor does the Higgs look like composite. Especially: No top partners observed!

- But the SM is close to scale invariant, *explicitly* broken only by $\mu_{\mathrm{EW}}^2 |H|^2$.
- Is there a phenomenologically viable way to dynamically generate the EW scale as a quantum effect?

[Coleman, E. Weinberg '73]

[Coleman, E. Weinberg '73]

[Coleman, E. Weinberg '73]

Quantum critical scale generation (1x) is free of a hierarchy problem.

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {\rm GeV}$ [S. Weinberg '76]

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {
m GeV}$ [S. Weinberg '76]

 \Longrightarrow This is **experimentally** excluded!

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {\rm GeV}$ [S. Weinberg '76]

⇒ This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)? ... probably **also no!**

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {\rm GeV}$ [S. Weinberg '76]

⇒ This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)?

... probably **also no!** Because: see talk by Daniel Litim

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {\rm GeV}$ [S. Weinberg '76]

⇒ This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)?

... probably also no! Because:

see talk by Daniel Litim

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {
m GeV}$ [S. Weinberg '76]

 \Longrightarrow This is **experimentally** excluded!

Does that mean that quantum criticality has no business with Nature (the SM)?

... probably **also no!** Because:

see talk by Daniel Litim

Parametrically, this would require: $m_t \lesssim m_Z$ and $m_h \lesssim 10 \, {
m GeV}$ [S. Weinberg '76]

⇒ This is experimentally excluded!

Does that mean that quantum criticality has no business with Nature (the SM)?

... probably **also no!**

Because:

see talk by Daniel Litim

5/15

Phenomenologically viable conformal "solution" to hierarchy problem

- Assume classical scale symmetry $\mu_{\rm EW}=0$ as a leading order starting point.
- EW scale = Dimensional transmutation in a new critical sector + Higgs portal?

$$\lambda_p |\Phi|^2 |H|^2 \quad \leadsto \quad \lambda_p \, v_\Phi^2 \, |H|^2 \quad = \quad \mu_{\mathrm{EW}}^2 \, |H|^2$$
 [Hempfling '96], [Meissner, Nicolai '06], . . .

• This usually re-introduces a **little hierarchy problem** $\mu_{\rm EW}^2 \sim \lambda_p \times \Lambda_{\rm CW}^2$.

Andreas Trautner Custodial Naturalness, 29.03.25 6/15

Phenomenologically viable conformal "solution" to hierarchy problem

- Assume classical scale symmetry $\mu_{\rm EW}=0$ as a leading order starting point.
- EW scale = Dimensional transmutation in a new critical sector + Higgs portal?

$$\lambda_p \, |\Phi|^2 \, |H|^2 \quad \leadsto \quad \lambda_p \, v_\Phi^2 \, |H|^2 \quad = \quad \mu_{\rm EW}^2 \, |H|^2 \qquad \qquad \text{[Hempfling '96], [Meissner, Nicolai '06],} \ldots$$

• This usually re-introduces a little hierarchy problem $\mu_{\rm EW}^2 \sim \lambda_p \times \Lambda_{\rm CW}^2$.

New here:

Higgs as pNGB of spontaneously broken **custodial symmetry** avoids this problem.

Phenomenologically viable conformal "solution" to hierarchy problem

- Assume classical scale symmetry $\mu_{\rm EW}=0$ as a leading order starting point.
- EW scale = Dimensional transmutation in a new critical sector + Higgs portal?

$$\lambda_p \, |\Phi|^2 \, |H|^2 \quad \leadsto \quad \lambda_p \, v_\Phi^2 \, |H|^2 \quad = \quad \mu_{\mathrm{EW}}^2 \, |H|^2$$
 [Hempfling '96], [Meissner, Nicolai '06], . . .

• This usually re-introduces a little hierarchy problem $\mu_{\rm EW}^2 \sim \lambda_p \times \Lambda_{\rm CW}^2$.

New here:

Higgs as pNGB of spontaneously broken **custodial symmetry** avoids this problem.

- ✓ Technically natural suppression of EW scale.
- ✓ Only elementary fields, no compositeness, all perturbative.
- ✓ No top partners, marginal top Yukawa like in SM.

Custodial Naturalness - General Idea

Assumptions:

- 1. Classical scale invariance.
- 2. New scalar degree of freedom, here complex Φ
- 3. Mechanism to trigger quantum criticality of $\Phi.$ Here: gauge symmetry $U(1)_X.$

$$SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_X$$
.

4. High-scale custodial symmetry (C.S.) of scalar potential, here SO(6), $H+\Phi=6$

$$\Rightarrow$$
 $V(H,\Phi) = \lambda \left(|H|^2 + |\Phi|^2 \right)^2$ at $\mu = \Lambda_{\text{high}} = M_{\text{Pl}}$.

Both, scale invariance and custodial symmetry are broken by quantum effects.

- Dim. transmutation \rightsquigarrow $\langle \mathbf{6} \rangle$ VEV of $\langle H \rangle \langle \Phi \rangle$ -system \rightsquigarrow SSB of SO(6)
- In addition, SO(6) is *explicitly* broken by: y_t , g_Y & g_X , g_{12} ,... y_{new} ,...
- \Rightarrow SO(6) $\xrightarrow{\langle 6 \rangle}$ SO(5): massive dilaton + 4 *would-be* NGBs + massive pNGB "h".

General Idea – RGE evolution is key!

below
$$M_{\rm Pl}: V_{\rm tree}(H,\Phi) = \lambda_H |H|^4 + 2 \lambda_p |\Phi|^2 |H|^2 + \lambda_\Phi |\Phi|^4$$
.

Actual running for a benchmark point. Dashed=negative. β_i : Beta function coefficients.

Dominant breaking of Custodial Symmetry (C.S.): Top Yukawa coupling y_t

$$\Rightarrow \lambda_{H} \gg \lambda_{p,\Phi} \Rightarrow \langle H \rangle \ll \langle \Phi \rangle$$

$$\downarrow^{H_{b}}$$

$$\downarrow^{(H)}$$

Crucially: $\mu_{\rm EW}^2 \sim [\lambda_p - \lambda_\Phi] \ v_\Phi^2$ requires BSM source of C.B. Here: q_X , ${\rm U}(1)^2$ -mixing q_{12}

Minimal Model

Field	#Gens.	$SU(3)_c\!\times\!SU(2)_L\!\times\!U(1)_Y$	$U(1)_X$	$U(1)_{B-L}$
Q	3	$(3,2,+ frac{1}{6})$	$-\frac{2}{3}$	$+\frac{1}{3}$
u_R	3	$({f 3},{f 1},+rac{2}{3})$	$+\frac{1}{3}$	$+\frac{1}{3}$
d_R	3	$(3,1,- frac{1}{3})$	$-\frac{5}{3}$	$+\frac{1}{3}$
L	3	$(1,2,- frac{1}{2})$	+2	-1
e_R	3	(1 , 1 ,-1)	+1	-1
ν_R	3	$({f 1},{f 1},\ 0)$	+3	-1
\overline{H}	1	$(1,2,+ frac{1}{2})$	+1	0
Φ	1	$({f 1},{f 1},\ 0)$	+1	$q_{\Phi}^{\mathrm{B-L}} = -\frac{1}{3}$

New fields:

 Φ , Z'.

$$Q^{(X)} \equiv 2Q^{(Y)} + \frac{1}{q_{\Phi}^{B-L}} Q^{(B-L)}$$

- The only free parameter of the charge assignment is $q_{\Phi}^{\mathrm{B-L}}$.
- Constrained to $\frac{1}{3}\lesssim |q_\Phi^{\rm B-L}|\lesssim \frac{5}{11}$; special value: $q_\Phi^{\rm B-L}=-\frac{16}{41}$. Let us fix $q_\Phi^{\rm B-L}=-\frac{1}{3}$.

Note: Our model is very similar to "classical conformal extension of minimal B-L model", but $q_{\Phi}^{\rm B-L} \neq -2$.

Minimal Model

• SM parameters G_F , $m_h \longleftrightarrow$ parameters λ , g_X (@ $\Lambda_{high} \sim M_{Pl}$).

Minimal model has the same number of parameters as the SM!

- \Rightarrow Properties of BSM Z', h_{Φ} are predictions of the model.
- Proxy for additional source of C.S. breaking: g_{12} . C.S. \leftrightarrow fix $g_{12}|_{M_{\mathrm{Pl}}}=0$.

Minimal Model

• SM parameters G_F , $m_h \longleftrightarrow$ parameters λ , g_X (@ $\Lambda_{high} \sim M_{Pl}$).

Minimal model has the same number of parameters as the SM!

- \Rightarrow Properties of BSM Z', h_{Φ} are predictions of the model.

• Proxy for additional source of C.S. breaking:
$$g_{12}$$
. C.S. \leadsto fix $g_{12}|_{M_{\rm Pl}}=0$. Masses of physical particles: $h_\Phi \subset \Phi \text{ and } h \subset H, \langle \Phi \rangle = \frac{v_\Phi}{\sqrt{2}}, \langle H \rangle = \frac{v_h}{\sqrt{2}}$

$$Z': m_{Z'}^2 \approx g_X^2 v_\Phi^2$$

Dilaton:
$$m_{h_{\Phi}}^2 \approx \beta_{\lambda_{\Phi}} v_{\Phi}^2 \approx \frac{3 g_X^4}{8\pi^2} v_{\Phi}^2$$

pNGB Higgs:
$$m_h^2 \approx 2 \left[\lambda_\Phi \left(1 + \frac{g_{12}}{2 \, g_X} \right)^2 - \lambda_p \right] v_\Phi^2 \; .$$

⇒ The EW scale is custodially suppressed compared to the intermediate scale v_{Φ} of spontaneous scale and custodial symmetry violation.

Experimental tests and constraints

• ATLAS & CMS $Z' \to l^+ l^-$ searches constrain $m_{Z'} \gtrsim 4 \, {
m TeV}$. (di-jets are weaker)

• EW precision: Additional custodial breaking shifts m_Z ,

$$\Delta m_Z \propto -m_Z \langle H \rangle^2/(2 \langle \Phi \rangle^2)$$
.

Constraint: $\langle \Phi \rangle \gtrsim 18 \, {\rm TeV}$, weaker than direct Z' searches.

Dilaton-higgs mixing:

$$\mathcal{O}_{h_{\Phi}} \approx \sin \theta \times \mathcal{O}_{h \to h_{\Phi}}^{\mathrm{SM}}$$
.

For $m_{h_{\Phi}} \sim 75 \, {\rm GeV}$, $\sin \theta \lesssim 10^{-1}$ is a-OK. (typical values for us are BP: $\sin \theta \sim 10^{-2.5}$)

• Neglect dilaton-gauge-gauge coupling from trace anomaly, suppressed by $\frac{v_h}{v_{\Phi}}$.

Reproductions and predictions $(q_{\Phi}^{\rm B-L}=-\frac{1}{3})$

All points shown reproduce the correct EW scale. M_t : top pole mass.

Fine tuning and Future Collider projections $(q_{\Phi}^{\rm B-L}=-\frac{1}{3})$

Fine tuning:

$$\Delta \, := \, \max_{g_i} \, \left| \frac{\partial \, \ln \frac{\langle H \rangle}{\langle \Phi \rangle}}{\partial \ln g_i} \right| \, .$$

Barbieri-Giudice measure.

[Barbieri, Giudice '88]

The choice of $\langle H \rangle/\langle \Phi \rangle$ automatically subtracts the shared sensitivity of VEVs to variation of g_i . [Anderson, Castano '95]

Red stars: $g_{12}|_{M_{\rm Pl}} = 0$.

Black star: benchmark point.

Projections are for hypercharge universal Z' from [R.K. Ellis et al. '20]

Prime targets: Z' at FCC, Dilaton production(+displaced dec.) at Higgs factories.

Other signatures and model variations

CW transition is known to be first order → Gravitational wave signals.
 see e.g. [Litim, Wetterich, Tetradis 97], [Dasgupta, Dev, Ghoshal, Mazumdar '22], [Huang, Xie '22]

see e.g. [Lillin], wellerich, rendaus 97], [Dasgupha, Dev, Griosha, wazunidar 22], [riudilg, Ale 22

In fact, the "minimal conformal B − L model" is prototype for strong supercooling → strong GW signal from bubble collisions.

see e.g. [Ellis,Lewicki,Vaskonen'20] and talk by Kamila Kowalska

Quantitative predictions for GW signal of this model have to be worked out yet.

Other signatures and model variations

 $\hbox{\bf CW transition is known to be first order} \rightarrow \hbox{\bf Gravitational wave signals.} \\ \hbox{\bf see e.g. [Litim, Wetterich, Tetradis '97], [Dasgupta, Dev, Ghoshal, Mazumdar '22], [Huang, Xie '22] }$

• In fact, the "minimal conformal B-L model" is prototype for **strong supercooling** \rightarrow strong GW signal from bubble collisions.

see e.g. [Ellis,Lewicki,Vaskonen'20] and talk by Kamila Kowalska

Quantitative predictions for GW signal of this model have to be worked out vet.

- Custodial Naturalness is reasonably stable under variation of boundary conditions, charge assignments, addition of extra particles. Ide Boer, Lindner, AT 2502,096991
- → Many variations and extensions are possible. (already known from B-L model.)
 - Additional fermions can:
 - Provide ingredients for neutrino mass generation.
 - Be part of the dark matter.
 - "Cure" SM vacuum instability.

[Iso, Okada, Orikasa '09] [Foot, Kobakhidze, McDonald, Volkas '07]

IS. Okada '181

[(Das), Oda, Okada, Takahashi '15('16)]

- Minimal "Scalar Custodial Naturalness" $SM + \phi + S + SO(5)$. [de Boer, Lindner, AT 'XX]
- There is a possibility to realize large enough splitting of $\lambda_p \lambda_{\Phi}$ without new sources of CS breaking; this requires $\Lambda_{\rm high} \approx 10^{11} {\rm GeV}$.

Conclusions

- Quantum criticality may play important role in generation of EW scale.
- Classical scale invariance + extended custodial symmetry, here SO(6):
- ⇔ New mechanism to explain large scale separation and little hierarchy problem.
 - Minimal model has same number of parameters as the SM.
 - Predicts light scalar dilaton $m_{\Phi} \sim 75 \, {\rm GeV} + Z'$ at $4-100 \, {\rm TeV}$.
 - Top mass at lower end of currently allowed 1σ region.
 - Good model to search for at future colliders + Higgs factory + GR waves.
 - Starting point for many further extensions, e.g. flavor.

Thank You!

Backup slides

Numerical analysis

- SM parameters G_F , $m_h \longleftrightarrow$ parameters λ , g_X (@ $\Lambda_{high} \sim M_{Pl}$).
- Remaining free parameter: g_{12} . Can fix $g_{12}|_{M_{\rm Pl}}=0 \quad \Leftrightarrow \quad \text{C.S. fixes all d.o.f.'s.}$

Minimal model has the same number of parameters as the SM!

 \rightarrow Properties of Z' and h_{Φ} are predictions of the model.

Numerical analysis

- SM parameters G_F , $m_h \longleftrightarrow$ parameters λ , g_X (@ $\Lambda_{high} \sim M_{Pl}$).
- Remaining free parameter: g_{12} . Can fix $g_{12}|_{M_{\mathrm{Pl}}} = 0 \quad \Leftrightarrow \quad \text{C.S. fixes all d.o.f.'s.}$

Minimal model has the same number of parameters as the SM!

 \rightarrow Properties of Z' and h_{Φ} are predictions of the model.

Parameter scan

- Impose $\mathrm{SO}(6)$ symmetric BC's @ M_{Pl} : $\lambda_{H,\Phi,p}|_{M_{\mathrm{Pl}}}=\lambda|_{M_{\mathrm{Pl}}}$ and $g_{12}|_{M_{\mathrm{Pl}}}=0.$
- 2-loop running with PyR@TE. [Sartore, Schienbein '21]
- Iteratively determine intermediate scale Φ_0 , match to SM at $\mu_0 \sim \mathcal{O}(g_X \Phi_0)$.
- Numerically minimize 1-loop $V_{\rm eff}$ (at μ_0), compute v_{Φ} and v_H , $m_{h_{\Phi}}$, m_h , $\lambda_{H,\Phi,p}$, match to 1-loop $V_{\rm eff}^{\rm SM}$ (+dilaton hidden scalar, corrections negligible).
- From μ_0 down to m_t 2-loop running.
- Require $v_H^{\rm exp} = 246.2 \pm 0.1 \, {\rm GeV}$, as well as g_L, g_Y, g_3 and g_t within SM errors.
- Low scale new couplings g_X , g_{12} and masses $m_{Z'}$, $m_{h_{\Phi}}$ are predictions.

Parameter space $(q_{\Phi}^{\mathrm{B-L}}=-\frac{1}{3})$

Parameters at $\mu=M_{\rm Pl}$. All points shown reproduce the correct EW scale. New scale $\langle \Phi \rangle = v_{\Phi}/\sqrt{2}$ is prediction. $(m_h, M_t \text{ not imposed as constraint}).$

Higgs-dilaton mixing

A crude analytic expression for the Higgs-dilaton mixing angle is

$$\tan \theta \approx \frac{2\left[\lambda_p - \left(1 + \frac{g_{12}}{2g_X}\right)^2 \left(\lambda_\Phi - \frac{3g_X^4}{16\pi^2}\right)\right] v_H v_\Phi}{m_h^2 - m_{h_\Phi}^2}$$

Note: We use a fully numerical evaluation of all masses and mixings for our analysis which also confirms the analytic approximations.

Gauge-kinetic mixing

Gauge kinetic mixing parameter in B-L basis, $\tilde{g}:=\varepsilon g_Y/\sqrt{1-\varepsilon^2}$ with $\varepsilon F^{\mu\nu}F'_{\mu\nu}$. The $\mathrm{U}(1)$ part of the gauge covariant derivative acting on generic field ϕ is given by

$$\left[\partial_{\mu} + i\left(Q^{(\mathbf{Y})}, Q^{(\mathbf{B}-\mathbf{L})}\right) \begin{pmatrix} g_{Y} & \tilde{g} \\ 0 & g_{\mathbf{B}-\mathbf{L}} \end{pmatrix} \begin{pmatrix} A_{\mu}^{(\mathbf{Y})} \\ A_{\mu}^{(\mathbf{X})} \end{pmatrix}\right] \phi.$$

 $A_{\mu}^{({
m Y})}$ and $A_{\mu}^{({
m X})}$ are the ${
m U}(1)$ gauge fields. Rewriting this in terms of ${
m U}(1)_{
m X}$ charge $Q^{({
m X})}$:

$$\left[\partial_{\mu} + i\left(Q^{(Y)}, Q^{(X)}\right)\begin{pmatrix} g_{Y} & \tilde{g} - 2q_{\Phi}g_{\mathrm{B-L}} \\ 0 & q_{\Phi}g_{\mathrm{B-L}} \end{pmatrix} \begin{pmatrix} A_{\mu}^{(Y)} \\ A_{\mu}^{(X)} \end{pmatrix}\right] \phi.$$

Hence, we define $g_{12}:=\tilde{g}-2q_{\Phi}g_{\rm B-L}$ and the gauge coupling $g_X:=q_{\Phi}g_{\rm B-L}$. Running as function of scale:

Andreas Trautner Custodial Naturalness, 29.03.25 21/15

Gravitational wave signals?

- We have ignored finite-T effects so far. This is yet to be done.
- CW transition is known to be first order → Gravitational wave signals.
 see e.g. [Litim, Wetterich, Tetradis '97], [Dasgupta, Dev, Ghoshal, Mazumdar '22], [Huang, Xie '22]
- In fact, the "minimal conformal B-L model" is prototype for **strong** supercooling \rightarrow strong GW signal from bubble collisions. see e.g. [Ellis,Lewicki,Vaskonen'20]

Quantitative predictions for our specific case have yet to be worked out!

Details of the potential and matching

Effective potential for background fields H_b and Φ_b @1-loop $\overline{\rm MS}$:

 $(-1)^{2s}i \equiv (-1)^{1}$ for bosons(fermions), $n_i \equiv \# d.o.f$ $C_i = \frac{5}{6} \left(\frac{3}{2}\right)$ for vector bosons(scalars/fermions).

$$V_{\text{eff}} = V_{\text{tree}} + \sum_{i} \frac{n_{i}(-1)^{2s_{i}}}{64\pi^{2}} m_{i,\text{eff}}^{4} \left[\ln \left(\frac{m_{i,\text{eff}}^{2}}{\mu^{2}} \right) - C_{i} \right].$$

Two different analytical expansions: First

$$V_{\rm EFT}(H_b) \; := \; V_{\rm eff} \left(H_b, \tilde{\Phi}(H_b) \right) \; , \qquad \qquad \text{with} \qquad \qquad \frac{\partial V_{\rm eff}}{\partial \Phi_b} \bigg|_{\Phi_b = \tilde{\Phi}(H_b)} = 0 \; .$$

Using $\Phi_0 := \Phi(H_b/\Phi_b = 0)$, we expand $V_{\rm EFT}$ in $H_b \ll \Phi_0$, \curvearrowright RG-scale independent expression

$$V_{\rm EFT} \approx 2 \left[\lambda_p - \left(1 + \frac{g_{12}}{2 \, g_X} \right)^2 \lambda_\Phi \right] \Phi_0^2 H_b^2 + \frac{\lambda_p \lambda_H}{16 \pi^2} [\ldots] \; . \label{eq:VEFT}$$

This expression illustrates the origin of the Higgs mass and EW scale suppression.

Alternatively, take $\mu=\mu_0:=\sqrt{2}g_X\Phi_0\mathrm{e}^{-1/6}\sim\langle\Phi\rangle$ and "t Hooft-like" expansion $\frac{\lambda_p}{\lambda_H}\sim\frac{H_b^2}{\Phi_0^2}\sim\epsilon^2\to0$,

$$V_{\rm EFT} = -\frac{6\,g_X^4}{64\pi^2}\Phi_0^4 + 2\,\lambda_p\Phi_0^2H_b^2 + \lambda_HH_b^4 + \sum_{i={\rm SM}}\frac{n_i(-1)^{2s_i}}{64\pi^2}m_{i,{\rm eff}}^4 \left[\ln\left(\frac{m_{i,{\rm eff}}^2}{\mu_0^2}\right) - C_i\right]. \label{eq:VEFT}$$

This expression facilitates matching to the SM at scale μ_0 .

Details of the potential and matching II

For all practical purpose the usual CW relation holds:

$$\Phi_0^2 \approx \exp\left\{-\frac{16\pi^2\lambda_\Phi}{3g_X^4} - \ln(2g_X^2) + \frac{1}{3} + \dots\right\}\mu^2$$
.

Analytically we can use $H_b \ll \tilde{\Phi}(0) := \Phi_0$ and the leading order expression for Φ_0 reads

$$\frac{1}{16\pi^2} \ln \left(\frac{\Phi_0^2}{\mu^2} \right) \, = \, - \frac{\lambda_\Phi + \frac{1}{16\pi^2} \left\{ q_\Phi^4 g_X^4 \left[3 \ln \left(2 q_\Phi^2 g_X^2 \right) - 1 \right] + 4 \, \lambda_p^2 \left(\ln 2 \lambda_p - 1 \right) \right\}}{3 \, q_\Phi^4 g_X^4 + 4 \, \lambda_p^2} \; .$$

Alternatively, we can use the ϵ expansion, and Φ_0 at $\mathcal{O}(\epsilon^0)$ reads

$$\frac{1}{16\pi^2} \ln \left(\frac{\Phi_0^2}{\mu^2} \right) \, = \, - \frac{\lambda_\Phi + \frac{1}{16\pi^2} \left\{ q_\Phi^4 g_X^4 \left[3 \ln \left(2 q_\Phi^2 g_X^2 \right) - 1 \right] \right\}}{3 \, q_\Phi^4 g_X^4} \; .$$

This is an example for the difference between the two expansion schemes. Note that our quantitative analysis is not based on any of these expansions but uses a fully numerical minimization of the effective potential to compute $\langle \Phi \rangle$ and $\langle H \rangle$.

Integrating out scalar in non-conformal model

Consider a simple two complex scalar system with a potential given by

$$V = -m_H^2 |H|^2 - m_\Phi^2 |\Phi|^2 + \frac{\lambda_H}{2} |H|^4 + \lambda_p |H|^2 |\Phi|^2 + \frac{\lambda_\Phi}{2} |\Phi|^4.$$

For $m_{\Phi}^2 > 0$ and $-m_H^2 + m_{\Phi}^2 \frac{\lambda_p}{\lambda_{\Phi}} > 0$, this potential has a minimum at $\langle \Phi \rangle := \frac{v_{\Phi}}{\sqrt{2}} = \sqrt{\frac{m_{\Phi}^2}{\lambda_{\Phi}}}, \langle H \rangle = 0$. Integrating out the heavy field Φ at tree level, we find the low energy potential

$$\begin{split} V_{\text{EFT}} &= \left(-m_H^2 + \lambda_p \frac{v_\Phi^2}{2}\right) |H|^2 + \frac{1}{2} \left(\lambda_H + \frac{\lambda_p^2}{\lambda_\Phi}\right) |H|^4 \\ &= \left(-m_H^2 + \lambda_p \frac{m_\Phi^2}{\lambda_\Phi}\right) |H|^2 + \frac{1}{2} \left(\lambda_H + \frac{\lambda_p^2}{\lambda_\Phi}\right) |H|^4. \end{split}$$

The light field is massless at tree level if $\lambda_\Phi \, m_H^2 = \lambda_p \, m_\Phi^2$. A special point fulfilling this condition is $m_H^2 = m_\Phi^2 := m^2$ and $\lambda_p = \lambda_\Phi := \lambda$. At this point the original potential is given by

$$V = -m^{2} (|H|^{2} + |\Phi|^{2}) + \frac{\lambda}{2} (|H|^{2} + |\Phi|^{2})^{2} + \frac{\lambda_{H} - \lambda}{2} |H|^{4}$$

This potential is symmetric up to the quartic term of H which can violate the symmetry badly without affecting the light mass term at tree level.

Benchmark point 1 (BP)

$\mu [{\rm GeV}]$	g_X	g_{12}	λ_H	λ_p	λ_{Φ}	y_t	$m_{h_{\Phi}}$ [GeV]	$m_{Z'} [{\rm GeV}]$	$m_h [{ m GeV}]$	$v_H [{ m GeV}]$
$1.2\cdot 10^{19}$	0.0713	0.	$\lambda_H =$	$\lambda_p = \lambda_\Phi = 3$	$3.3030 \cdot 10^{-5}$	0.377	-	-	-	-
4353	0.0668	0.0093	0.084	$-1.6 \cdot 10^{-6}$	$-2.5 \cdot 10^{-11}$	0.795	67.0	5143	132.0	263.0
172	-	-	0.13	-	-	0.930	-		125.3	246.1

Table: Input parameters of an example benchmark point (BP) at the high scale (top) and corresponding predictions at the matching scale μ_0 (middle) and M_t (bottom). At μ_0 the bold parameters also correspond to the parameters of the one-loop SM effective potential. The numerical result for the VEV of Φ is $\langle \Phi \rangle = v_\Phi/\sqrt{2} = 54407\,\mathrm{GeV}$.

One-loop RGE's

Neglect all Yukawas besides y_t and take general $U(1)_X$ charges $q_{H,\Phi}$.

$$\begin{split} \beta_{\lambda_H} &= \frac{1}{16\pi^2} \bigg[+ \frac{3}{2} \left(\left(\frac{g_Y^2}{2} + \frac{g_L^2}{2} \right) + 2 \left(q_H g_X + \frac{g_{12}}{2} \right)^2 \right)^2 + \frac{6}{8} g_L^4 - 6 y_t^4 \\ &\quad + 24 \lambda_H^2 + 4 \lambda_p^2 + \lambda_H \left(12 y_t^2 - 3 g_Y^2 - 12 \left(q_H g_X + \frac{g_{12}}{2} \right)^2 - 9 g_L^2 \right) \bigg] \;, \\ \beta_{\lambda_\Phi} &= \frac{1}{16\pi^2} \left(+ 6 q_\Phi^4 g_X^4 + 20 \lambda_\Phi^2 + 8 \lambda_p^2 - 12 \lambda_\Phi q_\Phi^2 g_X^2 \right) \;, \\ \beta_{\lambda_p} &= \frac{1}{16\pi^2} \bigg[+ 6 q_\Phi^2 g_X^2 \left(q_H g_X + \frac{g_{12}}{2} \right)^2 + 8 \lambda_p^2 \\ &\quad + \lambda_p \left(8 \lambda_\Phi + 12 \lambda_H - \frac{3}{2} g_Y^2 - 6 q_\Phi^2 g_X^2 - 6 \left(q_H g_X + \frac{g_{12}}{2} \right)^2 - \frac{9}{2} g_L^2 + 6 y_t^2 \right) \bigg] \;, \\ \beta_{g_{12}} &= \frac{1}{16\pi^2} \left[-\frac{14}{3} g_X g_Y^2 - \frac{14}{3} g_X g_{12}^2 + \frac{41}{3} g_Y^2 g_{12} + \frac{179}{3} g_X^2 g_{12} + \frac{41}{6} g_{12}^3 \right] \;. \end{split}$$

The dominant splitting of $\lambda_{\Phi} - \lambda_{p}$ via running (for benchmark charges) is given by

$$eta_{\lambda_{\Phi}} - eta_{\lambda_{p}} = -rac{6\,g_{12}\,g_{X}^{2}}{16\pi^{2}}\left(g_{X} + rac{g_{12}}{4}
ight) - rac{\lambda_{p}}{16\pi^{2}}\left[6y_{t}^{2} - rac{9}{2}g_{L}^{2} - rac{3}{2}g_{Y}^{2} + 12(\lambda_{H} - \lambda_{p})
ight] + \dots \,,$$

We do the numerical running with the full two-loop beta functions computed with PyR@TE.

N	lext-t	to-N	linima	Mod	els:
					0.0.

(M1)
$$q_{\Phi} \equiv q_{\Phi}^{\mathrm{B-L}} \neq -\frac{1}{3}$$

Field	#Gens.	$SU(3)_c \times SU(2)_L \times U(1)_Y$	$U(1)_X$	$\mathrm{U}(1)_{\mathrm{B-L}}$			
(M2) Minimal set of additional fermions with Φ Yukawa couplings							
ψ_L	1	(1, 1, 0)	$-(\frac{1}{q_{\Phi}}+1)$				
ψ_R	1	$({f 1},{f 1},0)$	$-(\frac{1}{q_{\Phi}}+1)$	$-(1+q_{\Phi})$			
(M3) Minimal additional set of fermions that allow for DM							
ψ_L	1	$({f 1},{f 1},0)$	$\frac{p}{q_{\Phi}}$	p			
ψ_R	1	(1 , 1 ,0)	$\frac{p}{q_{\Phi}} + 1$	$p+q_{\Phi}$			
ψ_L'	1	(1 , 1 ,0)	$\frac{p}{q_{\Phi}}+1$	$p+q_{\Phi}$			
$\psi_{\scriptscriptstyle B}'$	1	(1, 1, 0)	p	p			

Designed such as to allow new Φ -Yukawa couplings

$$\mathcal{L}_{\mathrm{Yuk}} \supset y_{\psi} \, \overline{\psi}_L \Phi^{\dagger} \nu_R^{\alpha} \quad \text{(M2)} \qquad \text{or} \qquad y_{\psi} \, \overline{\psi}_L \Phi^{\dagger} \psi_R + y_{\psi'} \, \overline{\psi'}_L \Phi \psi'_R \quad \text{(M3)}$$

Mechanism for ν -mass generation (M2), **or** multi-component fermion Dark Matter (M3). Additional contribution to custodial symmetry breaking:

$$\left.eta_{\lambda_p} - eta_{\lambda_\Phi}
ight|_{y_{\psi}} \simeq rac{\sum_k 2y_{\psi_k}^4}{16\pi^2}.$$

Neutrino mass generation (M2)

Minimal extension with new Φ -Yukawa interactions, $\mathcal{L}_{\mathrm{Yuk}} \supset y_{\psi} \, \overline{\psi}_L \Phi^{\dagger} \nu_R^{\alpha}$ (M2). After SSB, Dirac mass terms:

$$\mathcal{L}_{\text{mass}} \supset \begin{pmatrix} \overline{\nu}_L^{\alpha} & \overline{\psi}_L \end{pmatrix} \begin{pmatrix} y_{\nu}^{\alpha\beta} \frac{v_H}{\sqrt{2}} & 0 \\ y_{\psi}^{\beta} \frac{v_{\Phi}}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \nu_R^{\beta} \\ \psi_R \end{pmatrix} + \text{h.c.} \equiv \begin{pmatrix} \overline{\nu}_L^{\alpha} & \overline{\psi}_L \end{pmatrix} M_N \begin{pmatrix} \nu_R^{\beta} \\ \psi_R \end{pmatrix} + \text{h.c.}$$
(1)

Majorana masses not generated due to unbroken (accidental) lepton number. Fermion masses² are eigenvalues of $(\alpha, \alpha' = 1, 2, 3, \text{ sum over } \beta \text{ implicit})$

$$M_{N}M_{N}^{\dagger} = \begin{pmatrix} y_{\nu}^{\alpha\beta}(y_{\nu}^{\dagger})^{\beta\alpha'} \frac{v_{H}^{2}}{2} & y_{\nu}^{\alpha\beta}(y_{\psi}^{*})^{\beta} \frac{v_{H}v_{\Phi}}{2} \\ y_{\psi}^{\beta}(y_{\nu}^{\dagger})^{\beta\alpha'} \frac{v_{H}v_{\Phi}}{2} & y_{\psi}^{\beta}(y_{\psi}^{*})^{\beta} \frac{v_{\Phi}^{2}}{2} \end{pmatrix}.$$

The mass matrix has rank 3, implying the lightest active neutrino is predicted to be massless. There is a heavy sterile (w.r.t. SM gauge int's.) state with mass $\approx \sqrt{y_{\psi}^{\beta}y_{\psi}^{\beta}} \frac{v_{\Phi}}{\sqrt{2}}$ and field content

$$\Psi \sim \begin{pmatrix} \cos(\alpha_{\psi})\psi_L + \sin(\alpha_{\psi})\nu_L \\ \nu_R' \end{pmatrix}.$$

Mixing angle $\sin(\alpha_{\psi}) \approx y_{\nu} v_H/(y_{\psi} v_{\Phi})$ is automatically suppressed $(v_H \ll v_{\Phi})$ and ν_R' is a linear combination of ν_R 's not involving ψ_R .

Dark Matter model (M3), $(q_{\Phi} = -\frac{3}{8})$ Two-component DM: new VL fermions $\psi_{L,R}, \psi'_{L,R}$.

Most flexible scenario, g_{12} and y_{ψ} 's, still predictive and very constrained. Requires $m_{Z'} \approx 2 m_{sb} \approx 2 m_{sb'}$.