Combined measurements and interpretations of Higgs production and decay at $\sqrt{s} = 13$ TeV with CMS

Aliya Nigamova (University of Hamburg) On behalf of the CMS collaboration

59th Rencontres de Moriond Electroweak 2025 La Thuile | 29/03/2025

- Special place in the SM of particle physics the only fundamental spin-0 particle in the SM
- Responsible for the mass generation for the vector bosons (spontaneous symmetry breaking) and the fermions (Yukawa interaction)
- Combinations of single Higgs measurements are very powerful
 - **Precise measurements of Yukawa and vector boson couplings**

- 4 Fre EMV + h.c. + · YV Ø)

- Special place in the SM of particle physics the only fundamental spin-0 particle in the SM
- Responsible for the mass generation for the vector bosons (spontaneous symmetry breaking) and the fermions (Yukawa interaction)
- Combinations of single Higgs measurements are very powerful
 - Precise measurements of Yukawa and vector boson couplings
 - Access to Higgs self coupling through EW corrections [Eur. Phys. J. C (2017) 77: 887]

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

Nature 607 **の** \bigcirc 0000 (202)N

- Special place in the SM of particle physics the only \bigcirc fundamental spin-0 particle in the SM
- Responsible for the mass generation for the vector bosons (spontaneous symmetry breaking) and the fermions (Yukawa interaction)
- Combinations of single Higgs measurements are very \bigcirc powerful
 - Precise measurements of Yukawa and vector boson couplings
 - Access to Higgs self coupling through EW corrections
 - **Differential Higgs production cross sections** (STXS)

Stage 1.2

- Special place in the SM of particle physics the only fundamental spin-0 particle in the SM
- Responsible for the mass generation for the vector bosons (spontaneous symmetry breaking) and the fermions (Yukawa interaction)
- Combinations of single Higgs measurements are very powerful
 - Precise measurements of Yukawa and vector boson couplings
 - Access to Higgs self coupling through EW corrections
 - Differential Higgs production cross sections (STXS)
 - Model independent searches for BSM with EFT

Z= - 4 Fm FMV + ~ ダダ + h.c. + Y: Y: 4: 4: + h. c. + $\left| \mathcal{D}_{\phi} \right|^2 - V(\phi)$ $\sum_{i=1}^{C_i} O_i^{d=6}$

In this talk: update of CMS single Higgs results combination since Nature 607, 60–68 (2022)

- Run 2 results ($\sqrt{s} = 13$ TeV, 138 fb⁻¹) are included for all channels
- Signal strength for all production modes and decay channels
- Added new interpretations
- **First STXS combination in CMS**
- All results are very fresh, released for Moriond EW, analysis summary will become available early next week [CMS-HIG-21-018]

Input channels	Update since Nature (2022)	STXS/inclusive	Contributes to	References
$H \to \gamma \gamma$		STXS	μ , κ (all), STXS 0 and 1.2	JHEP 07 (2021) 027
$H \rightarrow ZZ$		STXS	μ , κ (all), STXS 0 and 1.2	Eur. Phys. J. C 81 (2021) 488
$H \rightarrow WW$		STXS	μ, κ (all), STXS 0 and 1.2	Eur. Phys. J. C 83 (2023) 667
$H \rightarrow \tau \tau$		STXS	μ , κ (all), STXS 0 and 1.2	Eur. Phys. J. C 83 (2023) 562
Boosted $H \rightarrow b\bar{b}$	New channel	STXS	μ, κ (all), STXS 0 and 1.2	JHEP 12 (2024) 035
$VBF\ H \to b\bar{b}$	New channel	inclusive	μ, κ (all), STXS stage 0	JHEP 01 (2024) 173
$VH \rightarrow b\bar{b}$	Updated with full Run 2	STXS	μ, κ (all), STXS 0 and 1.2	Phys. Rev. D 109 (2024) 092011
$t\bar{t}H \rightarrow b\bar{b}$	Updated with full Run 2	STXS	μ, κ (all), STXS 0 and 1.2	JHEP 02 (2025) 097
<i>tī</i> H multilepton		STXS	μ, κ (all), STXS 0 and 1.2	Eur. Phys. J. C 81 (2021) 378
$H \rightarrow \mu \mu$		inclusive	μ, κ (all), STXS stage 0	JHEP 01 (2021) 148
$H \to Z\gamma$		inclusive	μ, κ (all), STXS stage 0	JHEP 05 (2023) 233
$H \rightarrow \text{ inv}$	Added ttH and VH-had production channels	inclusive	Effective κ (w/ B_{inv}, B_{undet})	Eur. Phys. J. C 83 (2023) 933
$H \rightarrow 4l$ offshell	New channel	inclusive	Offshell κ interpretation	arXiv:2409.13663

7

Input channels	Update since Nature (2022)	STXS/inclusive	Contributes to	References
$H \to \gamma \gamma$		STXS	μ , κ (all), STXS 0 and 1.2	JHEP 07 (2021) 027
$H \rightarrow ZZ$		STXS	μ , κ (all), STXS 0 and 1.2	Eur. Phys. J. C 81 (2021) 488
$H \rightarrow WW$		STXS	μ , κ (all), STXS 0 and 1.2	Eur. Phys. J. C 83 (2023) 667
$H \to \tau \tau$		STXS	μ , κ (all), STXS 0 and 1.2	Eur. Phys. J. C 83 (2023) 562
Boosted $H \rightarrow b\bar{b}$	New channel	STXS	μ , κ (all), STXS 0 and 1.2	JHEP 12 (2024) 035
$VBF\ H \to b\bar{b}$	New channel	inclusive	μ, κ (all), STXS stage 0	JHEP 01 (2024) 173
$VH \rightarrow b\bar{b}$	Updated with full Run 2	STXS	μ , κ (all), STXS 0 and 1.2	Phys. Rev. D 109 (2024) 092011
$t\bar{t}H \rightarrow b\bar{b}$	Updated with full Run 2	STXS	μ , κ (all), STXS 0 and 1.2	JHEP 02 (2025) 097
<i>tī</i> H multilepton		STXS	μ , κ (all), STXS 0 and 1.2	Eur. Phys. J. C 81 (2021) 378
$H \rightarrow \mu \mu$		inclusive	μ, κ (all), STXS stage 0	JHEP 01 (2021) 148
$H \to Z\gamma$		inclusive	μ , κ (all), STXS stage 0	JHEP 05 (2023) 233
$H \rightarrow \text{ inv}$	Added ttH and VH-had production channels	inclusive	Effective κ (w/ B_{inv}, B_{undet})	Eur. Phys. J. C 83 (2023) 933
$H \rightarrow 4l$ offshell	New channel	inclusive	Offshell κ interpretation	arXiv:2409.13663

Statistical inference

Combined likelihood

$$L(\vec{x}; \vec{\alpha}, \vec{\theta}) = \prod_{r} L_{r}(\vec{x}; \vec{\alpha}, \vec{\theta}) \prod_{l} p_{l}(y_{l}; \theta_{l})$$

Interpretations are performed by scaling the SM predictions with POI equation $s_r^{if}(\overrightarrow{\alpha}, \overrightarrow{\theta}) = \mu^{if}(\overrightarrow{\alpha}) \cdot \left[\sigma^i \times \mathscr{B}^f\right]_{\text{SM,H}}$ $\overrightarrow{\alpha}$: signal strengths μ , Higgs couplings modifiers κ , SMEFT parameters c_i **Parameter estimation** SM compatibility p-value $q(\vec{x}; \vec{\alpha}) = -2 \ln \left(\frac{L(\vec{x}; \vec{\alpha}, \hat{\vec{\theta}}_{\vec{\alpha}})}{L(\vec{x}; \hat{\alpha}, \hat{\vec{\theta}})} \right);$

$${}_{\rm IO}(\vec{\theta}_{\rm th,norm}) \cdot \epsilon_{r,\rm SM}^{if}(\vec{\theta}_{\rm th,acc},\vec{\theta}_{\rm exp}) \cdot \mathscr{L}(\vec{\theta}_{\rm lumi})$$

$$; p_{SM} = 1 - F_{\chi^2_n}(q(\overrightarrow{\alpha}_{SM}))$$

Inclusive signal strength μ

 The most constraining fit (single parameter linearly scaling all onshell and SM input channels)

$$\begin{split} \mu &= 1.014^{+0.055}_{-0.053} \\ &= 1.014^{+0.040}_{-0.039} (\text{theory})^{+0.025}_{-0.024} (\text{exp}) \pm 0.028 (\text{stat}) \end{split}$$

SM compatibility p-value $p_{SM} = 1 - F_{\chi_n^2}(q(\vec{\alpha}_{SM})) = 0.80$

- Total uncertainty is dominated by theoretical uncertainty on the Higgs production (μ_R , μ_F variations)
- Leading sources of experimental uncertainty are due to background modeling and simulation statistics

	4
	\neg
	Η
	4
	Η
	4
	1
	\neg
	4
	Η
_	\neg
	Η
	4
	Η
	4
-	Η
	4
	Η
	\neg
10	\cap
тU	

Production and decay signal strengths μ^{l} **and** μ_{f}

Assigned POI for each production mode μ^{i} , p_{SM} = 2% For each decay channel μ_f , p_{SM} = 33%

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

11

Production X decay signal strengths $\mu^{i, f}$

Assigned parameters linearly scaling the predicted yields for each decay channel and production mode

 $\mu^{i,f}(\vec{\alpha}) = \mu^{i,f}$

New/updated channels:

 $H \rightarrow b\bar{b}$ in VBF, ttH, ggH, VH production modes

p_{SM} = 3 %

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

1	2

STXS stage 1.2 measurements

First STXS combination in CMS

- Extracting differential Higgs production $oldsymbol{O}$ cross sections with STXS (32 parameters)
- To avoid SM assumptions for BF $oldsymbol{O}$ extending the fit to extract the Higgs decay branching fraction ratios wrt

$$H \rightarrow ZZ$$
 (+ 4 parameters)

$$\mu^{i,ZZ} = \frac{\left[\sigma^{i} \times \mathcal{B}^{ZZ}\right]_{obs}}{\left[\sigma^{i} \times \mathcal{B}^{ZZ}\right]_{SM,HO}(\vec{\theta'}_{th,norm})}$$

For all other channels \bigcirc

$$\mu^{i,f} = \mu^{i,ZZ} \cdot R^{f/ZZ} \quad R^{f/ZZ} = \frac{\mathcal{B}_{obs}^{f} / \mathcal{B}_{SM,HO}^{f}(\vec{\theta'}_{th,norm})}{\mathcal{B}_{obs}^{ZZ} / \mathcal{B}_{SM,HO}^{ZZ}(\vec{\theta'}_{th,norm})}$$

p_{SM} = 6 %

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

Interpretations with κ framework

$$u^{H \to \gamma \gamma} = 1.59 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t$$

$$W \to W$$

$$H = - - \frac{\kappa_{t,b}}{t,b}$$

$$H = - - \frac{\kappa_{t,b}}{t,b}$$

$$W \to W$$

$$W \to W$$

$$W \to W$$

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

Interpretations with *k* framework

$$\mu^{i,f}(\vec{\kappa}) = \sigma^{i}(\vec{\kappa}) \cdot \mathcal{B}^{f}(\vec{\kappa}) \quad \kappa_{j}^{2} = \sigma_{j}/\sigma_{j}^{\mathrm{SM}} \operatorname{or} \kappa_{j}^{2} = \Gamma^{j}/\sigma_{j}^{j}$$

Add effective couplings κ_g , κ_γ , $\kappa_{Z\gamma}$ to scale ggH, $H \rightarrow \gamma \gamma, H \rightarrow Z \gamma$ effective vertices. p_{SM} = 18 %

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

[CMS-HIG-21-018]

 $\Gamma_{\rm SM}^{j}$

Η

Interpretations with *k* framework

$$\mu^{i,f}(\vec{\kappa}) = \sigma^{i}(\vec{\kappa}) \cdot \mathcal{B}^{f}(\vec{\kappa}) \quad \kappa_{j}^{2} = \sigma_{j}/\sigma_{j}^{\mathrm{SM}} \operatorname{or} \kappa_{j}^{2} = \Gamma^{j}/\mathcal{B}^{j}(\vec{\kappa})$$

Add effective couplings κ_g , κ_{γ} , $\kappa_{Z\gamma}$ to scale ggH,

 $H \rightarrow \gamma \gamma, H \rightarrow Z \gamma$ effective vertices. p_{SM} = 18 %

With $H \rightarrow$ inv channel: B_{inv} , B_{undet} are included $\frac{\Gamma_H}{I} = \frac{\kappa_H^2}{I} = \frac{\Sigma B F^i \times \kappa_i^2}{I}$ $\Gamma_{H,SM}$ 1 – (B_{inv} + B_{undet}) 1 – (B_{inv} + B_{undet})

Invisible decays characterized by Other undetected decays not associated with p_T^{miss} , due to p_T^{miss} (DM, other neutral BSM the lack of dedicated channels particles). In SM $B_{inv} = 0.1 \%$ from $H \rightarrow ZZ^* \rightarrow 4\nu$

> $\kappa_V \leq 1$ assumption is needed to resolve total width scaling degeneracy due to B_{undet} ; p_{SM} = 35 %

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

Interpretations with κ framework

$$\mu^{i,f}(\vec{\kappa}) = \sigma^{i}(\vec{\kappa}) \cdot \mathcal{B}^{f}(\vec{\kappa}) \quad \kappa_{j}^{2} = \sigma_{j}/\sigma_{j}^{\mathrm{SM}} \operatorname{or} \kappa_{j}^{2} = \Gamma^{j}/\mathcal{B}^{j}(\vec{\kappa})$$

Add effective couplings κ_g , κ_γ , $\kappa_{Z\gamma}$ to scale ggH,

 $H \rightarrow \gamma \gamma, H \rightarrow Z \gamma$ effective vertices. p_{SM} = 18 %

With H	\rightarrow inv channel: B_{inv} , B_{undet} are included
Γ_{H}	$-\kappa_H^2$
$\Gamma_{H,SM}$	$\frac{1}{1 - (B_{inv} + B_{undet})}$

With inclusion H \rightarrow 4I offshell analysis allows to release $\kappa_V \leq 1$ constraint and B_{inv} , B_{undet} at the same time (due to difference in dependence on $\kappa_{W,Z}$ for offshell and onshell Higgs production)

New since Nature 607, 60–68 (2022)

Constraints on Higgs self-coupling

- Constraining κ_{λ} with in single Higgs through EW NLO corrections contributing to decay and production vertices
- Corrections depend on Higgs kinematics, parametrization is defined in STXS bins [LHCHWG-2022-002]

Assumption	Best-fit κ_{λ}	$95\%~{ m CL}$ interval
$\kappa_{ m F} = \kappa_{ m V} = 1$	$2.14\substack{+3.95 \\ -3.16}$	$\left[-3.34,9.55\right]$
	$\begin{pmatrix}+6.57\\-3.35\end{pmatrix}$	([-4.58, 11.56])

With $\kappa_F = \kappa_V = 1$ constraints are close to H + HH combination 95% CL intervals [-3.34, 9.55] (this result) vs [-1.2,7.5] (H+HH)

	Best fit κ_{λ}	value $\pm 1\sigma$	2σ int	erval
Hypothesis	Expected	Observed	Expected	Obser
Other couplings fixed to the SM prediction	$1.0^{+4.6}_{-1.7}$	$3.1^{+3.0}_{-3.0}$	[-2.0, 7.7]	[-1.2,
Floating ($\kappa_V, \kappa_{2V}, \kappa_f$)	$1.0\substack{+4.7 \\ -1.8}$	$4.5\substack{+1.8 \\ -4.7}$	[-2.2, 7.8]	[-1.7,
Floating ($\kappa_V, \kappa_t, \kappa_b, \kappa_\tau$)	$1.0\substack{+4.8\\-1.8}$	$4.7\substack{+1.7\\-4.1}$	[-2.3, 7.7]	[-1.4,
Floating ($\kappa_V, \kappa_{2V}, \kappa_t, \kappa_b, \kappa_\tau, \kappa_\mu$)	$1.0^{+4.8}_{-1.8}$	$4.7^{+1.7}_{-4.2}$	[-2.3, 7.8]	[-1.4,
	[Phys. L	ett. B 861	(2025) 13	9210]

Summary

- CMS Higgs Run 2 combination provides \bigcirc ultimate sensitivity, targeting all production and decay modes
 - Signal strength for all production and decay channels (leading systematics - th. unc.)

 $\mu = 1.014^{+0.055}_{-0.053}$

- Interpretations with coupling modifiers
- First CMS STXS combination (stage 1.2) with 36 parameters)
- Stay tuned for more results to be released next week for Moriond QCD [CMS-HIG-21-018]
 - SMEFT interpretation, other variations of Higgs coupling models, more granular STXS results will be covered in the talk by J. Langford

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

o ⁻¹ (13	TeV)
at., κ _V ≤ 1 at., offshe	l inc.
° °	+ + + + + + + + + + + + + + + + + + + +
50 1.75 neter v	5 2.00 /alue
138 fb ⁻¹ 1 predictior % CL in SN	(13 TeV) In prediction
5, m _H = 12 p	5.38 GeV
ttH	
Zγ	hh

Backup

Higgs self-coupling from NLO EWK corrections

$$\frac{\sigma_{NLO_{EW}}^{i}}{\sigma_{NLO_{EW},SM}^{i}} = Z_{\mathrm{H}}^{BSM} \Big[\frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{EW}^{i}} + \kappa_{i}^{2} \Big]$$

Constraints on Higgs self-coupling

STXS stage 0

- 13 POIs: 7 for STXS cross sections $oldsymbol{O}$
- Additional 6 parameters to extract the $oldsymbol{O}$ Higgs decay branching fraction ratios wrt $H \rightarrow ZZ$

$$\mu^{i,ZZ} = \frac{\left[\sigma^{i} \times \mathcal{B}^{ZZ}\right]_{obs}}{\left[\sigma^{i} \times \mathcal{B}^{ZZ}\right]_{SM,HO}(\vec{\theta'}_{th,norm})}$$

For all other channels $oldsymbol{O}$

$$\mu^{i,f} = \mu^{i,ZZ} \cdot R^{f/ZZ} \quad R^{f/ZZ} = \frac{\mathcal{B}_{obs}^{f}/\mathcal{B}_{SM,HO}^{f}(\vec{\theta'}_{th,norm})}{\mathcal{B}_{obs}^{ZZ}/\mathcal{B}_{SM,HO}^{ZZ}(\vec{\theta'}_{th,norm})} \quad \underbrace{\mathsf{N}}_{\mathsf{M}}$$

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

B^{ZZ} (pb)

٠

ъ

First STXS combination result from CMS

STXS stage 0

ggH

•		
$H o \gamma \gamma$	+ (STXS)	
$H \rightarrow ZZ$	+ (STXS)	
$H \rightarrow WW$	+ (STXS)	
$H \to \tau \tau$	+ (inclusive)	
Boosted $H \rightarrow b\bar{b}$	+ (inclusive)	
$VBF H \rightarrow b\bar{b}$	+ (inclusive)	
$VH \rightarrow b\bar{b}$	+ (STXS)	
$t\bar{t}H \rightarrow b\bar{b}$	+ (inclusive)	
<i>ttH</i> multilepton	+ (STXS)	
$H \rightarrow \mu \mu$	+ (inclusive)	
$H \rightarrow Z\gamma$	+ (inclusive)	
$H \rightarrow \text{ inv}$	-	
$H \rightarrow 4l$ offshell	-	

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

First STXS combination result from CMS

 B^{f}/B^{ZZ}

STXS stage 1.2

Input channels	STXS/inclusive
$H o \gamma \gamma$	+ (STXS)
$H \rightarrow ZZ$	+ (STXS)
$H \rightarrow WW$	+ (STXS)
H o au au	+ (STXS)
Boosted $H \rightarrow b\bar{b}$	+ (STXS)
$VBF\ H \to b\bar{b}$	-
$VH \rightarrow b\bar{b}$	+ (STXS)
$t\bar{t}H \rightarrow b\bar{b}$	+ (STXS)
<i>ttH</i> multilepton	+ (STXS)
$H \rightarrow \mu \mu$	-
$H \rightarrow Z\gamma$	-
$H \rightarrow \text{inv}$	-
$H \rightarrow 4l$ offshell	-

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

First STXS combination result from CMS

Interpretation with *k*

$H \rightarrow \gamma \gamma$	+ (STXS)
$H \rightarrow ZZ$	+ (STXS)
$H \rightarrow WW$	+ (STXS)
H o au au	+ (inclusive)
Boosted $H \rightarrow b\bar{b}$	+ (inclusive)
$VBF\ H \to b\bar{b}$	+ (inclusive)
$VH \rightarrow b\bar{b}$	+ (STXS)
$t\bar{t}H \rightarrow b\bar{b}$	+ (inclusive)
$t\bar{t}H$ multilepton	+ (STXS)
$H \rightarrow \mu \mu$	+ (inclusive)
$H \to Z\gamma$	+ (inclusive)
$H \rightarrow \text{inv}$	+
$H \rightarrow 4l$ offshell	+

Included special model for $H \rightarrow$ 41 offshell analysis allows to release $\kappa_V \leq 1$ constraint and B_{inv}, B_{undet} at the same time

$$\begin{aligned} \kappa_{\rm g}^2 = &1.035\kappa_{\rm t}^2 + 0.002\kappa_{\rm b}^2 - 0.03\\ &+ 0.979\kappa_{\rm Q}^2 + 2.015\kappa_{\rm t}\kappa_{\rm Q} - 0.03 \end{aligned}$$

Aliya Nigamova (UHH) | Moriond EW 2025 | La Thuile | 29/03/2025

 $38\kappa_{\rm t}\kappa_{\rm b}$

 $-0.004\kappa_{\rm b}\kappa_{\rm Q}$.

