

EW Physics and LLPs at LHCb

Hang Yin

Central China Normal University

On behalf of the LHCb Collaboration

March 28th, 2025

59th Recontres de Moriond 2025

Electroweak Intractions & Unified Theories

○ Introduction

Catest Electroweak/LLPs results at LHCb

- Weak mixing angle
- Z boson mass

JHEP 13 (2024) 026

LHCb-paper-2025-008¹

Status of LLPs searches

O Summary

1. Also covered by Emir Muhammad's talk at the 'Young Scientists Forum' (Saturday)

Unique acceptance of LHCb

The *x* value of interacting partons is correlated with the boson rapidity

• Rapidity (y): $y = \frac{1}{2} ln \frac{x_1}{x_2}$

• Large rapidity: either very large x (up to 0.8) or very small x (5×10^{-5})

JINST 3 (2008) S08005

 10^{8} 10^{7} LHC (14 TeV) 10^{6} $Q^{2}(GeV^{2})$ jet evatron -Y,bb 10^{2} **HERA** 10 **Fixed Target** 10 10⁻³ 10⁻² 10⁻⁵ 10^{-6} 10^{-4} 10^{-1} Х PRD 110, (2024) 030001 3

2025/03/28

Unique acceptance of LHCb

Forward acceptance!

The *x* value of interacting partons is correlated with the boson rapidity

- Rapidity (y): $y = \frac{1}{2} ln \frac{x_1}{x_2}$
- Large rapidity: either very large x (up to 0.8) or very small x (5×10^{-5})

ATLAS/CMS and LHCb: complementary to each other

Weak mixing angle

- **©** Fundamental parameters of SM electroweak sector
- \bigcirc Couplings between fermions and Z boson: (V A)
 - Vector couplings: $V = I_3 2Qsin^2\theta_W$

• Axial-vector coupling: $A = I_3$

• At tree level,
$$sin^2 \theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right)$$

• At higher order: $sin^2 \theta_W^\ell = \kappa_f sin^2 \theta_W$

κ_f: a flavour dependent effetive scaling factor absorbing higher order corrections

Well-known deviation

Well-known deviation

 Excellent agreement between individual measurement and global fit

• Tension between A_{FB}^{b} and $A_{l}(SLD)$: ~3.2 σ

 Precision weak mixing angle measurements from LEP and SLD

Other EW observables are within 2σ band

Extraction of $sin^2 \theta_W^{\ell}$

 $\bigcirc \frac{d\sigma}{d\cos\theta^*} \propto 1 + \cos^2\theta^* + \frac{8}{3}A_{fb}^{4\pi}\cos\theta^*$ \mathbf{P}_1 $\bullet \theta^*$ is the angle in Collins-Soper frame Forward range, $\cos\theta^* > 0$ • $A_{fb} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$, as a function of mass Backward range, $\cos\theta^* < 0$ • large $|\cos\theta^*|$ are more influenced by changes in $\sin^2\theta_{eff}^{\ell}$ • small $|\cos\theta^*|$ mostly dilute the measurement LHCb simulation 1.00 $\cos \theta^*$

 $\bigcirc \cos\theta^* \sim \tanh(|\Delta\eta|/2), \Delta\eta = \eta^- - \eta^+$

Extraction of $sin^2 \theta_W^{\ell}$

 $\bigcirc \frac{d\sigma}{d\cos\theta^*} \propto 1 + \cos^2\theta^* + \frac{8}{3}A_{fb}^{4\pi}\cos\theta^*$ $\bigcirc \theta^* \text{ is the angle in Collins-Soper frame}$ $\bigcirc A_{fb} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}, \text{ as a function of mass}$ $\bigcirc \text{Backward range, } \cos\theta^* < 0$ $\bigcirc \text{large } |\cos\theta^*| \text{ are more influenced by changes in } \sin^2\theta_{\text{eff}}^{\ell}$ $\bigcirc \text{small } |\cos\theta^*| \text{ mostly dilute the measurement}$

$$\bigcirc \cos\theta^* \sim \tanh(|\Delta\eta|/2), \Delta\eta = \eta^- - \eta^+$$

Improves the precision of the sin²
$$\theta_{eff}^{\ell}$$
 measurement by 14% in simulation

Selected events

- Dataset: 2016+2017+2018 *pp* collision data at $\sqrt{s} = 13$ TeV, $\mathcal{L} = 5.3$ fb⁻¹
- Identified single muon trigger, in a fiducial region

• 2.0 < η_{μ} < 4.5, $p_{\rm T}^{\mu}$ > 20 GeV and 66 < $M_{\mu\mu}$ < 116 GeV

- **O Background contributions:**
 - Heavy-flavour: suppressed to the percent level using the muon impact parameter requirement
 - Hadronic background: suppressed to the percent level using an isolation requirement and a muon track fit requirement

O Roughly 860k events are selected for the measurement

Mass and $sin^2\theta_{eff}^{\ell}$ fit

Templates fit method to extract the $sin^2 heta_{eff}^\ell$

JHEP 13 (2024) 026

Measured result

 0.23147 ± 0.00044 (stat.)

 \pm 0.00005 (syst.) \pm 0.00023 (theory)

 Theory uncertainty includes PDF uncertainty, QCD and EW uncertainty

12

Measured result

0.23147 ± 0.00044 (stat.)

 \pm 0.00005 (syst.) \pm 0.00023 (theory)

 Theory uncertainty includes PDF uncertainty, QCD and EW uncertainty

Dominated by the statistical uncertainty!

13

Z mass measurement

© Fundamental parameters of SM electroweak sector

- \bigcirc Couplings between fermions and Z boson: (V A)
 - Vector couplings: $V = I_3 2Qsin^2\theta_W$

• Axial-vector coupling: $A = I_3$

$$\bigcirc$$
 In the tree level, $sin^2 \theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right)$

•
$$cos\theta_W = \frac{m_W}{m_Z}$$

Z mass measurement

- Fundamental parameters of SM electroweak sector
- \bigcirc Couplings between fermions and Z boson: (V A)
 - Vector couplings: $V = I_3 2Qsin^2\theta_W$ • Axial-vector coupling: $A = I_3$

$$\bigcirc$$
 In the tree level, $sin^2 \theta_W = \left(1 - \frac{m_W^2}{m_Z^2}\right)$

•
$$cos\theta_W = \frac{m_W}{m_Z}$$

• How about a m_Z measurement at LHCb?

→ The measurements of m_W and $sin^2 \theta_W$ are published

The m_Z measurement at LHCb

Only using part of Run-2 dataset (2016)

Feasibility study

• Same dataset used for m_W measurement

- Using $Z \rightarrow \mu^+ \mu^-$ events
 - Narrow cut on η_{μ} : 2.2 4.4
 - Selection cuts: similar cuts to weak mixing angle
 - 173k selected data

 \bigcirc Same analysis framework as m_W , $\sin^2 \theta_W^\ell$

A challenging measurement at hadron collider

O Pseudomass method to correct charge-dependent curvature biases in the data

EW Physics and LLPs at LHCb

- Improves the Z mass resolution by $\mathcal{O}(20\%)$
- Time varying momentum scale applied to data
 Use Υ(1S) to calibrate the momentum scale drift of O(10⁻⁴)
- Direction dependent momentum scale applied to MC
 Use $\Upsilon(1S)$ data and MC

LHCb-PAPER-2025-008

17

O Momentum smearing to MC

LHCb-PAPER-2025-008

LHCb-PAPER-2025-008

$$m_Z = 91184.2 \pm 8.5 \pm 4.3 \text{ MeV}$$

LLPs searches

O Displaced leptons

Dark photon

- Low-mass dimuon resonances
- (Heavy) LLPs decaying to $e^{\pm}\mu^{\pm}\nu$
- Majorana neutrino
- Light boson from $b \rightarrow s$ decays

O Displaced jets

- HNL in $W^{\pm} \rightarrow \mu^{+}\mu^{\pm}$ jet • LLP \rightarrow jet jet
- LLP $\rightarrow \mu$ + jets

PRL 120 (2018) 061801, PRL 124 (2020) 041801

JHEP 10 (2020) 156

EPJC 81 (2021) 261

PRL 112 (2014) 131802

PRL 115 (2015) 161802, PRD 95 (2017) 071101

EPJC 81 (2021) 248

EPJC 77 (2017) 812

EPJC 77 (2017) 224

Run-3 prospects

O Physics track types supported in online selection:

- Long: lepton ID in HLT1 (both electron and muon)
- Ownstream (new in Run-3)
- Special cases for T-tracks (new in Run-3)

Run-3 prospects

LHCb-Figure-2025-001

Expectations:

- Access to particles with lifetimes up to 10 ns
- New sensitivity for New physics
- Competitive with dedicated LLP experiments

Summary

O LHCb has an extensive program on electroweak measurements

- Provide essential inputs for PDFs global fitting: unique acceptance
- Precision measurements: weak mixing angle, m_Z , m_W ...

C LHCb also performed plenty of searches for LLPs

- Ongoing Run-3 data taking
- A new GPU-based trigger system
- Probes very long-lived particles

Generator used in $sin^2\theta_W^\ell$ measurement

POWHEG-EWNLO

Includes QED predictions at NLO

Eur. Phys. J. C 73 (2013) 6 Phys. Rev. D 100 (2019) 071302

- EW theory inputs scheme, xW scheme: $(G_F, sin^2 \theta_W^{\ell}, m_Z)$
- well defined in theory, encouraged to use by LHC-wide EW WG
- **PDFs:**

• NNPDF 3.1, CT 18, MSHT20

	QCD	EW	QED	rest of the events
POWHEG-ewnlo [1] (default prediction)	NLO	NLO	PHOTOS	PYTHIA8
POWHEG-ewlo	NLO	LO	PHOTOS	PYTHIA8
POWHEG-plain	NLO	LO	PYTHIA8	PYTHIA8

Generator used in m_Z measurement

POWHEG-EWNLO

Includes QED predictions at NLO

• EW theory inputs scheme: (G_F, m_W, m_Z)

ullet Samples generated with varying m_Z

FSR:

- The first photon emission is computed by POWHEG: ISR, FSR and their interference
- Additional FSR emission handled by PHOTOS: resummation of log-enhanced ter ms
- Uncertainty on m_Z 0.8 MeV: alternative prescription with PYTHIA

O PDFs:

- Central fit from NNPDF3.1 NLO
- Choice of MSHT20NLO and CT19NLO: 0.7 MeV uncertainty is assigned

Eur. Phys. J. C 73 (2013) 6

Prospects

Cross-section measurements:

• W Xsec (5.02 TeV, 13 TeV, 13.6 TeV), leptnoic WW, ZZ Xsec, DPS measurement

O Properties of EW boson:

• Mass of W/Z boson, W helicity, Z angular coefficient (Run-1/Run-3)

O Higgs/Jet measurements:

• $H \rightarrow bb/cc, W+Jet Xsec, semi-leptonic WW Xsec$

Top physics

Prospects: m_W measurement

- Including 2017+2018 data
 - Cross-check between years, polarities ...
- O Goal: 20 MeV
 - Predicted statistical precision of 14 MeV
- Improvements on theoretical predictions
 - From POWHEG -> DYTurbo
 - New PDF sets
- Calibrations, momentu scale and efficiencies optimised
 - Pseudo mass method to curvature bias correction

2025/03/28

30

Dilution effects

At the LHC, the direction of the quark and anti-quark in each collision is unknow: use the p_z of Z boson

Charge Control Cont

- one larger x + one small x
- valence quark intends to have large *x*

Dilution effects

At the LHC, the direction of the quark and anti-quark in each collision is unknow: use the p_z of Z boson

A_{FB} uncertainties

Weak mixing angle: different PDFs

PDF set	$\sin^2 heta_{ m eff}^\ell$	PDF uncertainty	\mathbf{Shift}	Fit $\chi^2/ndof$
NNPDF31_nlo_as0118	0.23155	0.00023		8.4/9
CT18NLO	0.23165	0.00022	+0.00009	8.4/9
$MSHT20nlo_as118$	0.23137	0.00017	-0.00018	8.2/9
Arithmetic average		0.00021	-0.00003	_
PDF set	$\sin^2 \theta^\ell_{\pi}$	PDF uncertainty	Shift	Fit $v^2/ndof$

PDF' set	$\sin^2 \theta_{\rm eff}^{\epsilon}$	PDF uncertainty	Shift	Fit $\chi^2/ndof$
CT18ZNLO	0.23147	0.00019	-0.00008	8.4/9
NNPDF40_nlo_as_01180	0.23142	0.00022	-0.00014	8.6/9

Weak mixing angle: cross-checks

Subset	$\sin^2 heta_{ m eff}^\ell$	Fit χ^2/ndof	Pull
2016	0.23014 ± 0.00082	2.0/9	
2017	0.23155 ± 0.00085	13.4/9	+1.2 σ
2018	0.23242 ± 0.00077	10.5/9	$+2.0 \ \sigma$
Down polarity	0.23087 ± 0.00065	8.2/9	
Up polarity	0.23211 ± 0.00065	12.1/9	1.4σ
$0 \le \phi_d < \frac{\pi}{2}$	0.23136 ± 0.00065	10.1/9	
$rac{\pi}{2} \le \phi_d < \pi$	0.23161 ± 0.00065	6.5/9	$+0.3~\sigma$

Number of intervals	$\sin^2 heta_{ m eff}^\ell$	\mathbf{Shift}	Fit $\chi^2/ndof$
1	0.23151 ± 0.00050		
4	0.23167 ± 0.00045	+0.00016	3.1/3
6	0.23145 ± 0.00044	-0.00004	3.2/5
8	0.23146 ± 0.00044	-0.00003	11.7/7
10	0.23148 ± 0.00044	-0.00003	8.1/9

HNL in $W^{\pm} \rightarrow \mu^{+} \mu^{\pm} jet$

EPJC 81 (2021) 248

- Search for neutral leptons via *W* decays
- O Upper limit for both same- and opposite-sign muons using Run-1 dataset

ont competitive with ATLAS, CMS and DELPHI results

2025/03/28

LLP decaying to $e^{\pm}\mu^{\mp}\nu$

EPJC 81 (2021) 261

- **O With full Run-2 dataset**
- LLP masses down to 7 GeV
- Correcting mass to flight direction:
 - A proof-of-concept analysis
- Simultaneous fit to corrected mass and lifetime

$$m_{\rm corr} = \sqrt{m(e\mu)^2 + p(e\mu)^2 \sin^2 \theta} + p(e\mu) \sin \theta$$

Dark photons in di-muon spectrum

PRL 124 (2020) 041801

C Light dark photon can appear in a mixing with off-shell photon

• Large fraction in forward region, low p_T

O Normalized to off-shell photons

No need for efficiencies (for prompt search)

Search for both prompt and displaced signatures using Run-2 data

Dark photons in di-muon spectrum

PRL 124 (2020) 041801

- World best upper limits for invariant mass range of **200-700 MeV** (prompt)
- First displacement search: not from beam-dump experiments (214-350 MeV)
- Very low masses: di-electron search in hadrons decays

2025/03/28

