First searches for axion and dark photon dark matter using MAD MAX prototypes

Recontres de Moriond EW 2025

David Leppla-Weber (DESY, Germany) on behalf of the MADMAX collaboration (https://madmax.mpp.mpg.de) La Thuile (AO), 28.03.2025

The MADMAX collaboration:

Sponsored by:

MAgnetized Disk and Mirror Axion eXperiment

Searching for dark matter

- MADMAX searches for the dark matter axion
- > Axion motivated by solution to strong CP problem
- Abundant production by vacuum realignment and topological defects
- Popular dark matter candidate
- Axions within a magnetic field induce an effective current: J_a = g_{aγ}Bà (modified Maxwell)
- Fullsize MADMAX designed to be sensitive down to QCD band at 40 µeV to 400 µeV
- Parameter space out-of-reach for current dark matter searches and laboratory experiments

Axion landscape with MADMAX projection Yellow band: benchmark QCD axion models

Working principle

Electric fields at a dielectric interface

- > Photon emission at dielectric interfaces:
 - Electric field from axion <> B-field coupling
 - Discontinuity at interface solved by γ emission
 - Interface to a mirror: $\epsilon_2 \to \infty$
 - \rightarrow Called a dish antenna, signal power $\equiv P_0$

Working principle

Electric fields at a dielectric interface

- > Photon emission at dielectric interfaces:
 - Electric field from axion \leftrightarrow B-field coupling
 - Discontinuity at interface solved by γ emission
 - Interface to a mirror: $\epsilon_2 \to \infty$
 - \rightarrow Called a dish antenna, signal power $\equiv P_0$

Schematic MADMAX setup

- > MADMAX booster is a dielectric haloscope:
 - Stack of dielectric disks in front of a mirror
 - Photons emitted at dielectric interfaces ($\omega = m_a$)
 - Signal amplified by resonances and interference
 - Scanning possible by disk movement
 - Amplification quantified by the boost factor $\beta^2 = P_{sig}/P_0$

(central for sensitivity calculation!)

> Baseline shape subtracted using savitzky golay filter

Residual power (with software-injected axion)

- > Baseline shape subtracted using savitzky golay filter
- > Expected noise fluctuation $\sigma \propto \frac{P}{\sqrt{t_{test}}}$ known
 - \rightarrow Power excess can be translated to units of σ (with some extra steps)

Residual power (with software-injected axion)

- > Baseline shape subtracted using savitzky golay filter
- > Expected noise fluctuation $\sigma \propto \frac{P}{\sqrt{t-1}}$ known
 - \rightarrow Power excess can be translated to units of σ (with some extra steps)
- > Potential outcomes:
 - $1 \ge 5\sigma$ excess found:
 - ightarrow potential discovery, perform rescan
 - **2** No $\geq 5\sigma$ excess found, set bin-by-bin limit:
 - $ightarrow g_{a\gamma}$ that is ruled out by measurement with 95 % confidence (requires boost factor!)

Axion run

Setup schematic

- > 3 \emptyset 200 mm sapphire ($\epsilon \simeq 9.36$) disks
- > Tuning rod enables frequency fine-tuning
- > Closed design allows for easy simulation
- > 1.6 T Morpurgo dipole magnet
- Run performed from February to March 2024

Setup in Morpurgo magnet

Model based

- > Boost factor is not directly measureable
- > Reflectivity is: $S_{11} = \Gamma = \frac{E_{\text{out}}}{E_{\text{in}}} = |\Gamma|e^{-i\phi}$
- > S_{11} depends on the same quantities as β^2 \rightarrow Model parameters extracted from S_{11} fit

Model based

- > Boost factor is not directly measureable
- > Reflectivity is: $S_{11} = \Gamma = \frac{E_{\text{out}}}{E_{\text{in}}} = |\Gamma|e^{-i\phi}$
- > S_{11} depends on the same quantities as β^2 \rightarrow Model parameters extracted from S_{11} fit
- > Convention: $S_{11}[dB]$ shows $|\Gamma|^2$ in logarithmic scale

> Group delay: $\tau_{gd} = -\frac{\partial \phi}{\partial \omega}$

Model based

- > Boost factor is not directly measureable
- > Reflectivity is: $S_{11} = \Gamma = \frac{E_{\text{out}}}{E_{\text{in}}} = |\Gamma|e^{-i\phi}$
- > S_{11} depends on the same quantities as $\beta^2 \rightarrow$ Model parameters extracted from S_{11} fit
- > Convention: $S_{11}[dB]$ shows $|\Gamma|^2$ in logarithmic scale
- > Group delay: $au_{gd} = -rac{\partial \phi}{\partial \omega}$
- β² uncertainties from goodness of fit, 3D correction and time stability

Reflectivity fit and resulting boost factor

Axion run

Results

Boost factors of all datasets

- > 5 different booster configurations used
 → Demonstrates tuning capability
- First axion search with a dielectric haloscope
- > Submitted to PRL, [arXiv:2409.11777]

Dark photon run

Universität Hamburg (UHH)

Setup with added absorbers 1: Booster, 2: Focusing mirror, 3: Antenna

- > 3 arnothing300 mm sapphire ($\epsilon \simeq$ 9.36) disks
- No magnet: perform dark photon search (massive photon mixing with SM photon)
- > Open prototype for full-scale MADMAX
- > Run performed over Christmas 2023

Measurement based

Perturbing object

- > Boost factor $\beta^2 \propto \int_V dV \mathbf{E} \cdot \mathbf{J}$ (E: Antenna induced field, J: axion/dark photon current)
- > Difference perturbed unperturbed reflectivity: $\Delta\Gamma\propto \textbf{E}^2$

- Boost factor $\beta^2 \propto \int_V dV {\bf E} \cdot {\bf J}$ (E: Antenna induced field, J: axion/dark photon current)
- > Difference perturbed unperturbed reflectivity: $\Delta\Gamma\propto {\bf E}^2$

>

Described in detail in [JCAP04(2024)005] (J. Egge et al) and [JCAP04(2023)064] (J. Egge)

Dark photon run

Results

First MADMAX physics results, including reinterpreted axion limits

- > Sensitivity to the kinetic mixing χ
- > Accepted by PRL, [arXiv:2408.02368]

> Leading dark photon limits over a $\sim 1.2 \,\text{GHz} = 5 \,\mu\text{eV}$ range

Summary & Outlook

- MADMAX is a dielectric haloscope looking for axion dark matter around 100 µeV
- > Two full calibration schemes have been developed
- > Axion and dark photon search successfully performed with prototypes
- > Prototype limits already world-leading at their mass range

Unpolarized DPDM

 $\rho = 0.3 \, \text{GeV/cm}^3$

Summary & Outlook

- > MADMAX is a dielectric haloscope looking for axion dark matter around 100 µeV
- > Two full calibration schemes have been developed
- > Axion and dark photon search successfully performed with prototypes
- > Prototype limits already world-leading at their mass range

> Outlook:

- Cold data from CERN currently being analysed
- Custom MADMAX cryostat expected next month
- Increase number of disks from 3 to 20
- Movable disks with piezo motors
- Full-scale setup installed at DESY cryoplatform $\gtrsim 2030$

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

David Leppla-Weber ALPS david.leppla.weber@dest

LNA noise model

- Noiseless two-port device with voltage and current source connected in parallel
- Two-port device impedance from deembedding of LNA internal length
- > Parameters:
 - Voltage noise amplitude V_n
 - Current noise amplitude I_n
 - Voltage/current noise correlation c

Booster noise model

Closed booster

- > Receiver chain modifies boost factor by reflecting parts of the signal
- > Noise model of booster with receiver chain
- > Electrical distance between receiver and booster varied
 - ightarrow Good fit confirms understanding of full experimental setup

CB200 bead pull

Measured E field within closed booster

- > Frequency of TE₁₁ mode resonance confirmed by bead pull measurement
- > Parasitic modes well separated

CB200 full setup

CB200 Morpurgo magnet B-field & T - monitors B-field probe Receiver В. 💽 🔁 chain First LNA outside the with T-B-field sensor attached Spectrum analyzer for R&S RFI spectrum measurement analyzer FSW43 VNA for S11 calibration 250 - 24 GH measurements LNA Tunable Lowpass Computer Bandpass bandpass filter with GPU filter filter

Receiver chain outside the B-field

CB200 B field overview

CB200 statistical analysis

Axion lineshape and cross-correlated power excess

Cross-correlated normalized power excess

Uncertainties

Effect	Uncertainty in $ g_{a\gamma} $
Y-factor power calibration	3% to $5%$
Receiver chain power stability	$\leq 2\%$
Axion field – TE_{11} overlap	6%
Boost factor determination	< 5 %
Frequency stability of TE_{11} mode	< 2 %
Total	5% to $10%$

Axion run uncertainties

Effect	Uncertainty on χ
Bead-pull measurements	2 to 17%
Bead pull finite domain correction	5%
Receiver chain impedance mismatch	$<\!1\%$
Y-factor calibration	4%
Power stability	3%
Frequency stability	2%
Line shape discretization	4%
Total	9 to 19%

Dark photon run uncertainties

Open booster mechanics

Loaded motor movement at cryogenic temperatures in a magnetic field

Qualification of piezo-electric actuators for the MADMAX booster system at cryogenic temperatures and high magnetic fields [JINST 18 P08011]

Disk movement at cryogenic temperature in a magnetic field

First mechanical realization of a tunable dielectric haloscope for the MADMAX axion search experiment [JINST 19 T11002]