Hubble Tension Update

Martin Schmaltz, Boston University

Moriond EW, March 28, 2025

CMB, BAO fits to ACDM

$$H_0 = 67.5 \pm 0.5$$

(stat.+syst.) Planck,ACT,SPT **Distance ladders**

$$H_0 = 73.2 \pm 0.9$$

(stat.+syst.) SH0ES 2024

 5.7σ $p = 6.16 \times 10^{-9}$

Outline

- Intro: Hubble's law
- Distance ladders, SH0ES
- CMB, BAO fit to ACDM, sound horizon
- CMB, BAO fit to BSM

Summary

Hubble's Law - definition of H₀

$H_0 = \frac{v}{D} = \frac{zc}{D} \qquad \frac{\text{easy}}{\text{hard}}$

many "direct" methods to determine D

use the sound horizon r_s as ruler to measure D, calculated in ΛCDM matrix

Hubble tension, H₀

Geometry-Cepheids-Supernovae "distance ladder" SH₀ES collaboration (Riess et. al.)

JPL/NASA

Geometry > Cepheids > SN1a luminosity calibration

Cross-checking all rungs of the distance ladder

The Freedman vs. Riess tension last summer

FREEDMAN ET AL.

Status Report on the Chicago-Carnegie Hubble Program (CCHP): Three Independent Astrophysical Determinations of the Hubble Constant Using the James Webb Space Telescope

Wendy L. Freedman,¹ Barry F. Madore,² In Sung Jang,^{3,4} Taylor J. Hoyt, Abigail J. Lee,^{3,4,†} and Kayla A. Owens^{3,4}

$$H_0 \sim 70 + -2$$

JWST Validates HST Distance Measurements: Selection of Supernova Subsample Explains Differences in JWST Estimates of Local \mathbf{H}_0

Adam G. Riess,^{1,2} Dan Scolnic,³ Gagandeep S. Anand,¹ Louise Breuval,² Stefano Casertano,¹ Lucas M. Macri,⁴ Siyang Li,² Wenlong Yuan,² Caroline D. Huang,⁵ Saurabh Jha,⁶ Yukei S. Murakami,² Rachael Beaton,¹ Dillon Brout,⁷ Tianrui Wu,³ Graeme E. Addison,² Charles Bennett,² Richard I. Anderson,⁸ Alexei V. Filippenko,⁹ and Anthony Carr^{10, 11}

Differences in H0 are due to selection of hosts of calibration SN1a

Supernovae 1a bottom line:

- good agreement between Cepheids, TRGB, JAGB
- cross checks of all rungs of distance ladder ongoing
- local H0 = 73.2+-0.9 km/s/Mpc (SH0ES HST 2024)

Hubble tension, H₀

12

Strong lensing time delay -TDCOSMO/HOLICOW

19 Dec 2020

TDCOSMO IV: Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles

S. Birrer^{1,*}, A. J. Shajib², A. Galan³, M. Millon³, T. Treu², A. Agnello⁴, M. Auger^{5, 6}, G. C.-F. Chen⁷, L. Christensen⁴, T. Collett⁸, F. Courbin³, C. D. Fassnacht^{7,9}, L. V. E. Koopmans¹⁰, P. J. Marshall¹, J.-W. Park¹, C. E. Rusu¹¹, D. Sluse¹², C. Spiniello^{13, 14}, S. H. Suyu^{15, 16, 17}, S. Wagner-Carena¹, K. C. Wong¹⁸, M. Barnabè, A. S. Bolton¹⁹, O. Czoske²⁰, X. Ding², J. A. Frieman^{21, 22}, and L. Van de Vyvere¹²

 $H_0 \propto \frac{1}{\wedge t}$

H_0 measurements in flat Λ CDM - performed blindly

Wong et al. 2020	73.3 ^{+1.7}
6 time-delay lenses	H0LiCOW (average of PL and NFW + stars/constant M/L)
Millon et al. 2020	74.0 ^{+1.7}
6 time-delay lenses (5 H0LiCOW + 1 ST	RIDES) TDCOSMO (NFW + stars/constant M/L)
	$74.2^{+1.6}_{-1.6}$
	TDCOSMO (power-law)
this work kinemati	cs-only constraints on mass profile
7 time-delay lenses (+ 33 SLACS lenses	; in different combinations)
	74.5+5.0
	TDCOSMO-only
	73.3 ^{+5.8}
Т	DCOSMO+SLACS _{IFU} (anisotropy constraints from 9 SLACS lenses)
6	$7.4^{+4.3}_{-4.7}$
TDCOSMO+SLACS _{SDSS} (prof	ile constraints from 33 SLACS lenses)
6	7 4+4.1
	7.4 <u>-3.2</u>
IDCOSMO+SLACS _{SDSS+IFU} (aniso	stropy and profile constraints from SLACS)
60 65	70 75 80
	H_0 [km s ⁻¹ Mpc ⁻¹]

Approximate "mass-sheet" degeneracy

Evidence for mass-sheet disappeared

Project Dinos II: Redshift evolution of dark and luminous matter density profiles in strong-lensing elliptical galaxies across 0.1 < z < 0.9

William Sheu,^{1*} Anowar J. Shajib,^{2,3}† Tommaso Treu,¹ Alessandro Sonnenfeld,⁴ Simon Birrer,⁵ Michele Cappellari,⁶ Lindsay J. Oldham,⁷ Chin Yi Tan^{2,8}

- 21 elliptical galaxy-galaxy lenses reconstructed with dynamical observations
- consistent with NFW density profiles and no mass sheet

$$\lambda_c = 1.02 \pm 0.01$$

paper stops short of a new H₀, but we can predict TDCosmo2025

$$H_0 = 74.5 \pm (2?)$$

local H₀ measurements are not going away

 $H_0 = 73.2 \pm 0.9$ (stat.+syst.) SH0ES 2024

- direct, depend on Astrophysics, many cross-checks and different techniques
- SH0ES is local H₀, z < 0.1, other methods extend to z ~ 0.5, overlap with BAO late solutions can only do a small part
- meeting in Bern this week on standardizing analysis pipelines for local H₀ measurements. They have no snow :(

"Indirect" H₀ from CMB and BAO

 $H_0 = 67.6 \pm 0.5$ (stat.+syst.) Planck + ACT 2025

CMB and BAO use the sound horizon rs as a "standard ruler"

The sound horizon rs

CMB : correlations in temperature fluctuations BAO: correlations in galaxy distributions

sound horizon calculation

Sound speed
$$V_{\Gamma 3}$$

 $r_s = \int_0^{\tau_{\rm CMB}} c_s \, d\tau = \int_{z_{\rm CMB}}^{\infty} c_s \, \frac{dz}{\sqrt{\frac{8\pi G}{3}(\rho_{rad.} + \rho_{mat.})}}$
photons / dark matter neutrinos baryons

CMB

determined by fit to CMB

Going beyond ACDM to fix Hubble tension

Horizon = 73.1 ± 0.9 $H_0^{CMB} = 67.6 \pm 0.5$

115 interms of CMB error bar

CMB, BAO: $H_0 \ll \frac{1}{r_s}$

to solve Hubble tension need rs smaller by 8%

a smaller r_s with additional early energy

$$r_s = \int_{z_{\rm CMB}}^{\infty} c_s \, \frac{dz}{\sqrt{\frac{8\pi G}{3}(\rho_{rad.} + \rho_{mat.} + \rho_{early})}}$$

- · early dark energy
- · dark radiation

Poulin,Smith,Karwal,Kamionkowski (2019)

Planck 2018

Baumann,Green (2016) Blinov,MarquesTavares (2020)

- dark interacting vadiation
- dark interacting Aloni, Berlin, Jo radiation with a step

Aloni, Berlin, Joseph, Schmaltz, Weiner (2022)

What is early energy

generic new energy densities at CMB times mess up the CMB

Does it work? maybe!

ACT DR6 Constraints on Extended Cosmological Models 18 Mar 2025

• A Neff $N_{idr} < 0.134$ (95%, P-ACT-LB) $H_0 = 68.59^{+0.41}_{-0.50}$ (68%, P-ACT-LB). • EDE $f_{EDE} < 0.12$ (95%, P-ACT-LB) $H_0 = 69.9^{+0.8}_{-1.5}$ (68%, P-ACT-LB) • Varying Me $H_e = m_{e,0} = 1.022 \pm 0.016$ $\Omega_k = -0.0031 \pm 0.0037$ $H_0 = 71.0 \pm 1.7$ (68%, P-ACT-LB)

• Hubble tension, 5.7σ , and growing

• local "direct" $H_0 \simeq 73 \pm 1 \, \mathrm{km \, s^{-1} Mpc^{-1}}$

many cross checks, several methods, bigger error more constraints on BSM models

• "indirect" BAO, CMB $H_0 \simeq 67.5 \pm 0.5$

precise, Planck, ACT, SPT, BAO all agree, rely on sound horizon which is sensitive to BSM physics. No compelling solution yet.

• connection to
$$S_8, w_0 + w_a < -1$$

 $m_{\nu}^2 < 0?$

much more data is coming!

CMB: Simons Observatory (first light 2/2025) Advanced SO (5-10 years) CMB-S4 (10 years?)

LSS: DESI (Y3 data), Euclid Vera Rubin Observatory - LSST (2025)

Supernovae: JWST (observing), TRGB (ongoing)

GW: LIGO 100 NS-NS mergers + optical (2030) Einstein Telescope (2035?)

Extra slides on Hubble from the distance to the Coma cluster

24 Sep 2024

DESI Peculiar Velocity Survey – Fundamental Plane

Khaled Said[®],¹* Cullan Howlett[®],¹ Tamara Davis[®],¹ John Lucey[®],² Christoph Saulder[®],³ Kelly Douglass[®], Alex G. Kim[®],⁵ Anthony Kremin[®],⁵ Caitlin Ross,¹ Greg Aldering,⁵ Jessica Nicole Aguilar,⁵ Steven Ahlen[®],⁶ Segev BenZvi[®],⁴ Davide Bianchi[®],⁷ David Brooks,⁸ Todd Claybaugh,⁵ Kyle Dawson,⁹ Axel de la Macorra[®], Biprateep Dey[®],¹¹ Peter Doel,⁸ Kevin Fanning[®],^{12,13} Simone Ferraro[®],^{5,14} Andreu Font-Ribera[®],^{15,8} Jaime E. Forero-Romero[®],^{16,17} Enrique Gaztañaga,^{19,20,18} Satya Gontcho A Gontcho[®],⁵ Julien Guy[®],⁵ Klaus Honscheid,^{23,21,22} Robert Kehoe,²⁴ Theodore Kisner[®],⁵ Andrew Lambert,⁵ Martin Landriau[®],⁵ Laurent Le Guillou[®],²⁵ Marc Manera[®],^{26,15} Aaron Meisner[®],²⁷ Ramon Miquel,^{28,15} John Moustakas[®],²⁹ Andrea Muñoz-Gutiérrez,¹⁰ Adam Myers,³⁰ Jundan Nie[®],³¹ Nathalie Palanque-Delabrouille[®],^{5,32} Will Percival[®],^{34,33,35} Francisco Prada[®],³⁶ Graziano Rossi,³⁷ Eusebio Sanchez[®],³⁸ David Schlegel,⁵ Michael Schubnell,^{39,40} Joseph Harry Silber[®],⁵ David Sprayberry,²⁷ Gregory Tarlé[®],⁴⁰ Mariana Vargas Magana[®],¹⁰ Benjamin Alan Weaver,²⁷ Risa Wechsler[®],^{41,12,13} Zhimin Zhou[®],³¹ Hu Zou[®],³¹

- Measure velocity dispersion, brightness, and angular sizes of 4191 elliptical galaxies to determine their distances via the "fundamental plane" (relation between velocity dispersion, surface brightness, effective radius)
- Conduct zero-point calibration of distances to the known Coma cluster distance D = 99.1+- 5.8 Mpc

$$H_0 = 76.05 \pm 1.3 * \left[\frac{99.1 \pm 5.8}{D_{Coma}}\right] \text{km/s/Mpc}$$

The Hubble Tension in our own Backyard: DESI and the Nearness of the Coma Cluster

DANIEL SCOLNIC,¹ ADAM G. RIESS,^{2,3} YUKEI S. MURAKAMI,³ ERIK R. PETERSON,¹ DILLON BROUT,⁴ MARIA ACEVEDO,¹ BASTIEN CARRERES,¹ DAVID O. JONES,⁵ KHALED SAID,^{6,7} CULLAN HOWLETT,^{6,7} AND GAGANDEEP S. ANAND⁸

New supernova based determination of the distance to the Coma cluster D = 98.5+-2.2 Mpc.

$$H_0 = 76.5 \pm 2.2 \text{ km/s/Mpc}$$

Future: - More SN1a in Coma (currently 12 out of 18 SN1a from 2019-2024)

- Use additional nearby clusters for calibration (Fornax, Virgo, Leo1, ...)

- 133,000 ellipticals in fundamental plane relation

Coma cluster distance measurements

Figure 4. Historical (1990 onward) distance modulus measurements of the Coma cluster (as reviewed in de Grijs & Bono 2020).

Riess 2024