Challenging DAMA/LIBRA and searching for WIMPs in COSINE-100

Institute for Basic Science (Center for Underground Physics)

59th Moriond Conference on EW Interaction & Unified Theories

Gyunho Yu

On behalf of COSINE Collaboration

WIMP Annual modulation

- •In Standard Halo Model (SHM), WIMP wind velocity modulates in the Earth frame.
- Modulating velocity
 → Modulating WIMP scattering rate

59th Moriond Conference

Dark matter signal? : DAMA/LIBRA

• DAMA/LIBRA : Nal(TI) based direct dark matter search in Gran Sasso

•Claimed to find annual modulation, compatible with the nature of DM candidate

59th Moriond Conference

Contradictions from other experiments

Already excluded by many experiments

Contradictions from other experiments

Already excluded by many experiments

Maybe,, Nal(Tl) detector is something special for DM interaction?

Nal(TI) DM searches in the world

ANAIS (Canfranc)

RE

Latests results with DAMA/LIBRA **ANAIS-112** COSINE-100

59th Moriond Conference

COSINE-100 experiment

Direct test of DAMA/LIBRA using Nal(TI)

Located in Yangyang Underground Laboratory (Y2L), Korea (Depth : ~ 700m)

59th Moriond Conference

COSINE-100 experiment

•8 Nal(TI) crystals (106kg), shielded with LS-veto & Lead shield & PS-veto

•Finished with ~6 year data taking (October 2016 ~ March 2023)

59th Moriond Conference

Pre-analysis 1 MLP-based PMT-induced noise selection

PMT induced noised shows different pulse-shape characteristics

•PSD parameter based training: 0.7 keV (8 Photoelectrons) threshold

59th Moriond Conference

Pre-analysis 2 Background modeling

Geometry of COSINE-100 In Geant4

Example of background isotopes

Crystal internal	²³⁸ U, ²³² Th, ⁴⁰ K, ⁶⁰ Co	
Crystal cosmogenic	²² Na, ^{121m} Te, ¹²⁹ I, ¹⁰⁹ Cd, ³ H,	
PMTs, Shields,	238U, 232Th, ⁴⁰ K, ²⁰⁸ Tl, ²³⁵ U	

- •Understand which background are existing in COSINE-100 data
- •Likelihood fit of data using MC, extrapolating WIMP ROI (Single-hit, < 6 keV).

59th Moriond Conference

Pre-analysis 2 Background modeling

Geometry of COSINE-100 In Geant4

Example of background isotopes

Crystal internal	²³⁸ U, ²³² Th, ⁴⁰ K, ⁶⁰ Co	
Crystal cosmogenic	²² Na, ^{121m} Te, ¹²⁹ I, ¹⁰⁹ Cd, ³ H,	
PMTs, Shields,	238U, 232Th, ⁴⁰ K, ²⁰⁸ Tl, ²³⁵ U	

- •Understand which background are existing in COSINE-100 data
- •Likelihood fit of data using MC, extrapolating WIMP ROI (Single-hit, < 6 keV).

59th Moriond Conference

Region of interest for WIMP search

Model-Independent analysis 6 year data modulation fit

Model-Independent analysis Precise calibration for testing DAMA

1. Electron recoil (keVee, linear calibration)

Model-Independent analysis Precise calibration for testing DAMA

1. Electron recoil (keVee, linear calibration)

2. Nuclear recoil calibration (keVnr)

Model-Independent analysis Annual modulation search : Phase fixed

No modulation & Disfavors DAMA (> 3σ)

Model-Independent analysis Annual modulation search : Phase floated

59th Moriond Conference

No modulation & Disfavors DAMA (> 3σ)

Consistency with ANAIS-112 Another modulation search experiment

ANAIS-112 6-year analysis also disfavors DAMA in 4.2 σ C.L, and shows consistent result with COSINE-100

59th Moriond Conference

arXiv:2502.01542

COSINE-100 + ANAIS-112Simultaneous fit of each 3-year data

Background subtracted residuals

59th Moriond Conference

Modulation amplitude summary

Used first 3-years of COSINE-100 & ANAIS-112 → disfavors DAMA

Released on arXiv this week! : <u>https://doi.org/10.48550/arXiv.2503.19559</u>

COSINE-100 + ANAIS-112Average of each 6-year modulation fit

59th Moriond Conference

Average of each COSINE-100 & ANAIS-112 6-year result \rightarrow disfavors DAMA Released on arXiv this week! : <u>https://doi.org/10.48550/arXiv.2503.19559</u>

Model-dependent analysis Spectral analysis in 3-year data : SI model

Bayesian test of WIMP

Bayesian test of WIMP spectrum using MCMC fit.

Full exclusion of DAMA/LIBRA 3 σ region in latest analysis

Year **Testing DAMA & COSINE-100** operation is finished. What's next?

New experimental site : Yemilab

Front. Phys. 12:1323991. (2024) Nature News Mt. Yemi (EL 998m) (COSINE-100 Site) (COSINE-100U Site **The New Underground** Laboratory

59th Moriond Conference

•New underground laboratory at Korea

700m (Y2L) → **1100m (Yemilab)**

• 5 times smaller muon flux

Next phase : COSINE-100U Higher light yield : New encapsulation design

Current encapsulation design

59th Moriond Conference

Next phase : COSINE-100U Low temperature operation : -30 oC

59th Moriond Conference

Next phase : COSINE-100U Expected sensitivity in SD model

COSINE-100U sensitivity : 1-year operation & 0.35 keV threshold

•Na (Z = 11) & I (Z = 53)

- Proton-odd targets
- Low-mass target (Na)

→sensitive in **low-mass WIMP SD channel**

- •Search to MeV-scale with Migdal Effect
- •Plan to operate in May. 2025. **Stay tuned!**

Summary & Outlook

COSINE-100 ruled out DAMA/LIBRA

-Above 3σ in model-independent analysis

-Perfect exclusion in model-depnednet analysis

•COSINE-100 + ANAIS-112 combined analysis conducted, and also rules out

DAMA/LIBRA over 3σ in [1–6] keV fit.

•COSINE-100U will start soon, and expected to have world competitive sensitivities for low-mass DM searches.

59th Moriond Conference

Backup

Canonical WIMP scattering concept

Differential rate of WIMP scattering

WIMP-nucleus Scattering Cross-section

WIMP Velocity requirement term

WIMP scattering total cross section : dependency on target material

$$\begin{split} \sigma(q) &\equiv \sigma_0 F^2(q) = \sigma_{SI} F_{SI}^2(q) + \sigma_{SD} F_{SD}^2 \\ \text{Spin-independent} \qquad \sigma^{SI} &= \frac{4}{\pi} \mu^2 [Zf_p + (A - Z)f_n]^2 \\ \text{Spin-dependent} \qquad \sigma^{SD} &= (\frac{32}{\pi}) G_F^2 \mu^2 (\frac{J+1}{J}) [\langle S_p \rangle a_p + \langle S_n \rangle a_n]^2 \end{split}$$

 ρ_{χ} : local DM density = 0.3 GeV/cm³ f(v, t): time-dependent velocity distribution (SHM) E_{nr} : Nuclear recoil energy μ : Reduced mass

 $F_{SD}(q)$: F(q): nucleus form factor

 f_p or f_n : proton or neutron coupling constant

 a_p : axial four-fermion WIMP-nucleon couplings

 $\langle S_p \rangle$: average proton spin contribution

Possible DAMA explanation Induced DM signal

Single exponential

COSINE-100 data applying DAMA method gives clear modulation (~7 σ , opposite phase)

Scientific Reports **13**, 4676 (2023)

Yearly Averaged (DAMA model)

Ultra pure crystals for COSINE-200

New Crystal development

K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)K.A. Shin et al., JINST 15, C07031 (2020)K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

•R&D for big & pure crystals are ongoing.

59th Moriond Conference

Simulation of background in new crystal

EPJC 80 (2020) 814

•Ultra-pure background is expected.

Reference : PRL 123, 241803 (2019) (Xenon 1T)

59th Moriond Conference

Migdal effect

- •Nuclear recoil \rightarrow Boost of electrons \rightarrow Secondary radiation
- Large visible energy of electron recoil compared to nuclear recoil.

Pre-analysis 2 Updates for better understanding

Alpha decaying background fit

59th Moriond Conference

- 60 days \rightarrow 1.7 years \rightarrow **3 years data**
- Various updates in background understanding
- Better understanding on decaying components

Model-dependent analysis Spectral analysis in 3-year data : SD model

Na (Z = 11) & I (Z = 53)

Proton-odd targets

 \rightarrow sensitive in SD model

Low-mass target (Na)

 \rightarrow sensitive in low-mass WIMP

Searching for Migdal effect of WIMP

 \rightarrow Down to sub-GeV WIMP

Pre-analysis 2 Background modeling w/ Geant4

Background study example from 1.7-year data analysis EPJC 81, 837 (2021)

- Need to understand which background are existing in COSINE-100 data
- •Generated MC spectrum using Geant4 and modeled the data

Geometry of COSINE-100

Example of background isotopes

Crystal internal	²³⁸ U, ²³² Th, ⁴⁰ K, ⁶⁰ Cc
Crystal	²² Na, ^{121m} Te, ¹²⁹ I,
cosmogenic	¹⁰⁹ Cd, ³ H,
PMTs,	²³⁸ U, ²³² Th, ⁴⁰ K, ²⁰⁸ TI
Shields,	235 U

Model-Independent analysis Annual modulation search : Amplitude summary

Range(KeV _{ee})	Amplitude (Counts/kg/day/KeV _{ee})		
	COSINE-100	DAMA/LIBRA	
1 ~ 3	0.001 ± 0.005	0.019 ± 0.002	
1~6	0.002 ± 0.003	0.010 ± 0.001	
2~6	0.005 ± 0.003	0.010 ± 0.001	

No modulation & Disfavors DAMA (> 3σ)

Range(KeV _{nr})	Amplitude (Counts/kg/day/KeV _r	
	COSINE-100	DAMA/LIBI
6.7 ~ 20	0.001 ± 0.005	0.019 ± 0.0

Other DM searches in COSINE-100 Exotic DM models

1. Bosonic super WIMP Phys. Rev. D 108 (2023) L041301

Search region : COSINE-100 energy O(100 keV)

2. Boosted dark matter Phys. Rev. Lett. 131, 201802

Search region : COSINE-100 energy <u>*O*(MeV</u>)

59th Moriond Conference

- **3. Inelastic ¹²⁷I DM scattering** Phys. Rev. D **108**, 092006
 - Search region : COSINE-100 energy <u>0(10 keV)</u>

4. Solar bosonic dark matter modulation search

Modulation search period : 3 years

Previous COSINE-100 analysis

Model Dependent : (WIMP spectrum test)

Model Independent : (Annual modulation)

Previous COSINE-100 analysis

Model Dependent : (WIMP spectrum test)

Model Independent : (Annual modulation)

Bias check w/ simulation COSINE-100 + ANAIS-112 3-year

- -

59th Moriond Confere....

Blue : COSINE-100 Red : ANAIS-112 **Black : Combined**

