Searches Using Unconventional Signatures and New Techniques

Cristián Peña on behalf of the ATLAS and CMS collaborations

CMS Run2 Dijet Scouting

Access low mass resonances using data scouting

Scouting: reduce event info to gain trigger rate (low mass)

Data scouting probes new hadronic resonances down to 600 GeV

CMS Run2 Dijet Scouting

Access low mass resonances using data scouting

Scouting: reduce event info to gain trigger rate (low mass)

Largest excess (~ 2σ) found at around 800 GeV

CMS Run2 Dijet Scouting

CMS-PAS-EXO-23-004

Run2 dijet scouting search significantly improves sensitivity across the whole mass range [0.6-1.8 TeV]

EXO-23-004 provides best CMS sensitivity for M_{Z²} in 600-1800 GeV

<u>CMS-PAS-EXO-24-006</u>

New resonances in 4 lepton final state New technique: highly boosted leptons

New merged-electron reconstruction recovers efficiency for highly boosted leptons

<u>CMS-PAS-EXO-24-006</u>

New resonances in 4 lepton final state

New technique: highly boosted leptons

New reconstruction techniques maintains sensitivity to very light and highly boosted resonances

JHEP 06 (2023) 036

New resonances in association with a Z boson

New signature using merged di-electrons from boosted Z decays

JHEP 06 (2023) 036

New resonances in association with a Z boson

Model independent approach. Probes high mass spectra with boosted Z

Dark Sectors: SUEP

LHC is a great tool to probe portals to dark sectors

SUEP Landscape

CMS-PAS-EXO-23-003: ZH channel

Gluon fusion

EXO-23-002, first SUEP search PRL 133 (2024) 191902

Associated production with a V boson

SUEP Signature

Signature: large number of tracks in a wide cluster

ZH SUEP Results

<u>CMS-PAS-EXO-23-003</u>

Data driven (extended ABCD) estimate in SUEP track multiplicity

ZH SUEP Results

<u>CMS-PAS-EXO-23-003</u>

Signal would show up at large SUEP track multiplicity

WH SUEP Results

Data driven (extended ABCD) estimate in SUEP track multiplicity

No significant excess observed in WH and ZH searches

SUEP Expected Limits: WH & ZH

Results interpreted as Higgs BR to SUEP

Associated vector boson production provides unique sensitivity of the Higgs (portal) decaying to SUEP BR(H to SUEP) ~1e-2

SUEP Expected Limits: WH & ZH

<u>CMS-PAS-EXO-24-030</u>

WH and ZH sensitivity comparison

WH and ZH searches provide complimentary and comparable sensitivity → enables combination

New method: ABCDisCoTEC

Enables data-driven background estimate by training a NN that produce 2 uncorrelated outputs

- Optimization achieved with modified differential method of multipliers (MDMM)
 - Closure is ensured as constraint in the loss function
- Method used in recent SUSY search (CMS-PAS-SUS-23-001)
 - with more CMS analyses to follow

Β

CMS Dijet Anomaly Search

- Generic search for heavy resonance decaying to two daughters, decaying hadronically
 - \rightarrow produce jets with 'anomalous' substructure

Α

- Use 5 different ML-based anomaly detection methods to tag 'anomalous' jets
- Demonstrated discovery sensitivity to wide range of signal models

Arxiv:2412.03747 / 100 GeV Data VAE-QR Bkg. fit 3 TeV X→YY'→4q Events / 5 TeV W'→B't→bZt Dijet mass distribution of one method 10 5000 3000 4000 6000 m_{ii} (GeV) CMS 138 fb⁻¹ (13 TeV) (g_10⁵ 3 TeV resonances section (VAE-QF 3 significance 5 significance CWoLa Hunting Inclusive. 95% CL exp. upp TNT CATHODE Inclusive S SSOLO 103 CATHODE-b 2-prong (τ₂₁, m_{SD}) QUAK: generic 3-prong (τ₃₂, m_{sn}) 10 Up to 7x improvement from anomaly detection $X \rightarrow YY' \rightarrow 4\sigma$ →B′t→bZt W_{kk}→WR→3W $G_{kk} \rightarrow HH \rightarrow 4t$ (3+3) (2+4)(6+6)(2+2)Signal model

CMS

CMS "pencil-jet" Search

Search for dark matter (DM) with a light Z'

First LHC search targeting DM recoiling against a narrow and low-hadron-multiplicity object ("pencil-jet")

CMS "pencil-jet" Search

Train a ML discriminator on the pencil-jet properties: energy fraction of leading track, deltaR, mass

Exclude mediator masses up to 4.2 TeV for DM mass of 100 GeV

CMS "pencil-jet" Search

Train a ML discriminator on the pencil-jet properties: energy fraction of leading track, deltaR, mass

Exclude mediator masses up to 4.2 TeV for DM mass of 100 GeV

Outlook

- Unconventional signatures and new techniques enhance the LHC physics program
 - Provide access to unexplored regions
- Presented 6 brand new results from CMS
- Will continue the "leave no stone unturned" paradigm
 - New and improved unconventional signatures and techniques will remain key!

Backups

arXiv:2410.16781

New scalar decaying to 2 spin-1 boson in 4 lepton final state

Probes new scalar (S) and spin-1 boson (Zd) masses with 4-lepton high mass spectrum