Searches for Displaced Signatures

Sagar Addepalli on behalf of ATLAS and CMS collaborations **Rencontres de Moriond Electroweak 2025** 27th March 2025

NATIONAL ACCELERATOR LABORATORY

Simple theoretical motivations: ~ degenerate masses, small couplings, virtual intermediate states

27 March 2025

Long-Lived Particles (LLPs) are one of the most promising directions to expand searches at the LHC

https://tikz.net/sm_particles_masses/

Sagar Addepalli

Well supported by standard reconstruction methods with the main challenges being analysis techniques

Probing the nature of prompt particles form the bulk of the LHC physics program

https://tikz.net/sm_particles_masses/

LHC experiments are also sensitive to absence of activity from stable particles

https://tikz.net/sm_particles_masses/

Searches such as mono-X or $H \rightarrow$ invisible allow strong constraints on new physics

Sagar Addepalli

The detector size can capture physics signatures from particles that decay macroscopically

https://tikz.net/sm_particles_masses/

Such searches need specialized reconstruction and analysis techniques

Sagar Addepalli

Today: NEW results by the ATLAS and CMS experiments on searches for LLPs using displaced signatures

The detector size can capture physics signatures from particles that decay macroscopically

https://tikz.net/sm_particles_masses/

Such searches need specialized reconstruction and analysis techniques

Sagar Addepalli

Higgs boson mediated hidden sector summary

CMS

27 March 2025

Sagar Addepalli

ATL-PHYS-PUB-2025-002

ATLAS

Higgs boson mediated hidden sector summary

Quite a few analyses contribute to an impressive level of excluded parameter space!

CMS

- **—▼ Prompt (with b-tag),** 138 fb⁻¹ (13 TeV) JHEP 06 (2024) 097
- **Displaced jets,** 34.7 fb^{-1} (13.6 TeV) Rept. Prog. Phys. 88 (2025) 037801 **Muon System**, 138 fb⁻¹ (13 TeV)
- Phys. Rev. D 110 (2024) 3 032007
- **H**→ **invisible**, 4.9-140 fb⁻¹ (7-8-13 TeV) Eur.Phys.J.C 83 (2023) 933

- **ATLAS**
- JHEP 10 (2018) 031 **Displaced vertices**, 140 fb⁻¹ (13 TeV)
- Phys. Rev. Lett. 133 (2024) 161803 **Calorimeter,** 140 fb⁻¹ (13 TeV) JHEP 11 (2024) 036
- **Muon System (2 vtx),** 139 fb⁻¹ (13 TeV) Phys. Rev. D 106 (2022) 3 032005
- **Muon System,** 36 fb⁻¹ (13 TeV) Phys. Rev. D 99 (2019) 052005
- $H \rightarrow invisible$, 4.7-139 fb⁻¹ (7-8-13 TeV) Phys.Lett.B 842 (2023) 137963

Today's results show improvements on top of these summary plots

Sagar Addepalli

Displaced Vertices in the tracker

Oisplaced Vertex (DV)

Primary Vertex (PV)

$$\tau_N \propto \frac{1}{m_N^5 \left\| U_\alpha \right\|^2}$$

Heavy Neutral Leptons **Targeted Phase Space**

A non-negligible gap in explored phase space remains

Typically left untouched for analysis convenience since the region is dominated by SM decays

arXiV:2304.06772

Heavy Neutral Leptons **Targeted Phase Space**

A non-negligible gap in explored phase space remains

Typically left untouched for analysis convenience since the region is dominated by SM decays

Secondary / Displaced Vertex (DV)

 \mathcal{U}

Primary Vertex

2

μ

e

Simplest extension from a two-lepton to a lepton-track DV tagged search

A new fully resonant channel adding useful contribution at low HNL masses.

A pion i.e. a non-lepton displaced track

Secondary / Displaced Vertex (DV)

🕑 Primary Vertex

 π

μ

Heavy Neutral Leptons

Discriminant

Using the reconstructed HNL mass as the signal discriminant

Leptonic Channels:

The HNL mass can be reconstructed using the PV-DV direction and a W mass constraint to fill-in for neutrino p₄ degrees of freedom

Semi-leptonic Channels: The HNL mass is just the reconstructed m_{DV}

Sagar Addepalli

Heavy Neutral Leptons

Results

No excesses found compatible with the signal hypothesis; Statistical fluctuations in low-stats channels

27 March 2025

Displaced Vertices in the muon system

Displaced Vertex

Jets in the Muon System Introduction

Model agnostic search probing hadronic clusters in the MS

Isolated Clusters

Jets in the Muon System **Channels**

Model agnostic search probing hadronic clusters in the MS

Isolated Clusters

Uses a specialized muon cluster ROI trigger with online DV reconstruction which is then matched to the offline DV

Associated Production

Uses standard lepton triggers and requires exactly one pair of opposite-sign same-flavor leptons with mass around the Z peak

Regions

Phase space geometrically split based on the MS geometry

Background Suppression

Residual hadronic interactions from prompt production, or "punch-through jets" forms the biggest background

Jets

Hard Tracks

27 March 2025

Soft Tracks

Hadrons

 $E_T^{\text{miss}}, H_T^{\text{miss}}$

Sagar Addepalli

Background Estimation

Two neural networks (with uncorrelated inputs) are trained to further distinguish signal from background NN outputs are used to defined ABCD planes giving a background estimate

H→SS Signal

Muon ROI Triggered - Endcap

Data

Results - Higgs mediated sector

27 March 2025

Events in A for all channels and regions found to be compatible with the background prediction

Clusters in the Muon System Introduction

A simplified model search looking for pion pairs in the MS

Vu

Triggering signature with non-zero position significance wrt the pp interaction

The 2018 CMS b-parking dataset gives a pure unbiased collection of ~10 billion b hadron decays

CMS-PAS-EXO-24-004

Clusters in the Muon System Background Shielding

The CMS steel return yoke provides a natural shielding against SM processes produced in the detector bulk

1.9

η=0.9

A series of vetos to suppress uncorrelated backgrounds (μ brem, prompt jets punch-through) based on the detector geometry are applied. Cathode Strip Chambers used as the primary cluster reconstructing system

Clusters in the Muon System Background Estimation

Uncorrelated Background: Residual background estimated by using the cluster timing, hits, and position

Correlated Background: Irreducible background from SM LLP decays estimated in an independent dataset using W+jets events and applied as a per-jet fake factor to the b-parking dataset

ABCD plane using N_{hits} and $\Delta \Phi$ (cluster, $\mu_{trigger}$) to estimate bkg.

CMS, 28

Clusters in the Muon System

Results

Uncorrelated background Jet-induced background Total background Observed events

Observed events found to be compatible with the background prediction in the signal region

В	С	D	A (SR)
19 ± 10	42632 ± 1240	51342 ± 490	16 ± 8
41^{+10}_{-7}	16128^{+238}_{-230}	5701^{+93}_{-91}	156^{+31}_{-22}
60^{+14}_{-12}	$58760^{+\overline{1263}}_{-1261}$	57043_{-498}^{+499}	171.52^{+32}_{-23}
60	58760	57043	181

95% CL limits on $Br(B \rightarrow K\Phi)$ constrained down to 10⁻⁵. First search ever for B decays to LLP scalars!

Summary

- up an opportunity to innovate various steps of the analysis chain
- Many all new searches with displaced signatures are presented
 - PUB-2025-002
 - Displaced vertices in the tracker -
 - Search for heavy neutral leptons by ATLAS: <u>2503.16213</u>
 - Displaced vertices in the muon system -
 - Model agnostic search using displaced jets in the MS by ATLAS: <u>CERN-EP-2025-062</u>
 - EXO-24-004

LLPs form an important part of the LHC physics program despite the challenges in their identification, opening

ATLAS+CMS Feb. 2025 summary of LLPs in the Higgs boson mediated hidden sector: <u>ATL-PHYS-</u>

Search for long-lived scalars from b hadron decays in the 2018 b-parking data by CMS: <u>CMS-PAS-</u>

Heavy Neutral Leptons

Analysis Channels

Six signal channels: $\ell_{\text{prompt}} - \ell_{\text{DV}}^{1} \ell_{\text{DV}}^{2}$ μ - $\mu\mu$, μ - μ e, μ -ee, e- $\mu\mu$, e- μ e, e-ee

 τ decays were found to have negligible acceptance in our analysis phase space

*The Branching Ratio depends on the HNL model considered

Four signal channels: $\ell_{\text{prompt}} - \ell_{\text{DV}}\pi$ $\mu - \mu \pi$, $\mu - e\pi$, $e - \mu \pi$, $e - e\pi$

Mesons heavier than pions decay rapidly and did not have large acceptance in the analysis

Heavy Neutral Leptons

DV Reconstruction

Finding and fitting the displaced vertex is the biggest strength of this analysis! Significant reduction in all backgrounds even for a not highly efficient DV reconstruction

Note that this is not a technical efficiency but the **total** efficiency – doesn't account for acceptance effects

Heavy Neutral Leptons **Metastable Hadrons**

- By far the biggest background, and hence many suppression cuts
- Lead (sub-lead) track $p_T > 10(5)$ GeV to suppress soft decays
- Fiducial selection:
 - <u>Leptonic channels</u>: 4 < r_{DV} < 300 mm; Material map veto for ee DVs
 - <u>Semi-leptonic channels</u>: 20 < r_{DV} < 300 mm; Material map veto
- $\Delta R(DV, jet) > 0.4$
- DV 3D position significance
 - $S^{2} = \Delta_{3D}(PV,DV)^{T} \cdot Cov(\Delta_{3D}(PV,DV))^{-1} \cdot \Delta_{3D}(PV,DV)$
 - \blacktriangleright S > 100 if m_{DV} < 5 GeV

Leptons inside jets

Heavy Neutral Leptons Heavy Flavor Decay Background

	Leptonic Channels	Semi-Leptonic Channels
	40 < m _{<i>ℓℓℓ</i>} < 90 GeV	$70 < m_{\ell\ell\pi} < 90 \text{ GeV}$
Signal Region (SR)	2 isolated displaced leptons	1 isolated displaced lepton
	b-jet veto	b-jet veto
	40 < m _{<i>ℓℓℓ</i>} < 90 GeV	$70 < m_{\ell \ell \pi} < 90 \; GeV$
Heavy Flavor (HF)	>=1 non-isolated displaced lepton	>=1 non-isolated displaced lepto
Control Region (CR)	>=1 b-tagged jet	>=1 b-tagged jet
		· · · · · · · · · · · · · · · · · · ·

Heavy Neutral Leptons **Control Regions**

Background modeled using templates from SM MC ($t\bar{t}$ and V+jets) predictions.

Sagar Addepalli

Heavy Neutral Leptons

Control Regions

27 March 2025

Heavy Neutral Leptons Leptons from soft jets (or fakes)

	Leptonic Channels	Semi-Leptonic Channels
	40 < m _{<i>ℓℓℓ</i>} < 90 GeV	$70 < m_{\ell \ell \pi} < 90 \; GeV$
Signal Region (SR)	2 isolated displaced leptons	1 isolated displaced lepton
	b-jet veto	b-jet veto
	40 < m _{<i>ttt</i>} < 90 GeV	$70 < m_{\ell \ell \pi} < 90 \; GeV$
Пеаvy Flavor (ПГ) Control Region (CR)	>=1 non-isolated displaced lepton	>=1 non-isolated displaced lepto
	>=1 b-tagged jet	>=1 b-tagged jet
	low m _{ℓℓℓ:} m _{ℓℓℓ} < 40 GeV	low $m_{\ell\ell\pi} = m_{\ell\ell\pi} < 70 \text{ GeV}$
Sideband CR	high m _{ℓℓℓ:} m _{ℓℓℓ} > 90 GeV	high $m_{\ell \ell \pi} = m_{\ell \ell \pi} > 90 \text{ GeV}$
	2 isolated displaced leptons	1 isolated displaced lepton
	low m _{ℓℓℓ:} m _{ℓℓℓ} < 40 GeV	low $m_{\ell\ell\pi} = m_{\ell\ell\pi} < 70 \text{ GeV}$
Isolation Relaxed Sideband CR	high m _{ℓℓℓ:} m _{ℓℓℓ} > 90 GeV	high m _{$\ell\ell\pi$} : m _{$\ell\ell\pi$} > 90 GeV
	no isolation requirement	no isolation requirement

27 March 2025

Heavy Neutral Leptons **Simultaneous Fit Structure**

	$\mu-\mu\mu$	$\mu-\mu e$
μ		SR
	CR	CR
	$e-\mu\mu$	e-µe
e		SR
	CR	CR
		μe

Heavy Neutral Leptons

Systematic Uncertainties

Systematic	SR $\mu - \ell \ell$	SR $e - \ell \ell$	SR $\mu - \mu \pi$	SR $\mu - e\pi$	SR $e - \mu \pi$	SR $e - e\pi$
Electrons	0.2 %	6 %		0.8 %	7 %	6 %
Muons	5 %	2 %	5 %	4 %	1 %	_
Flavour tagging	0.5 %	0.7 %	0.2 %	0.3 %	0.6 %	0.2 %
Pileup reweighting	2 %	2 %	2 %	0.5 %	0.2 %	1 %
Background modelling	12 %	10 %	10 %	9 %	13 %	14 %
SR template building	8 %	8 %	7 %	9 %	15 %	10 %
MC statistics	1.3 %	1.3 %	0.5 %	0.1 %	0.9 %	0.3 %
HF floating normalisation	13 %	13 %	13 %	13 %	13 %	13 %
Total	14 %	14 %	16 %	13 %	20 %	15 %

Heavy Neutral Leptons

Benchmark Models

- Models with one or two HNLs:
 - One HNL with single-flavour mixing (1SFH)
 - Two quasi-degenerate HNLs (2QDH) with $m_1 \sim m_2$
- Four different mixing scenarios:
 - Muon-only mixing
 - Electron-only mixing
 - Inverted hierarchy (IH) multi-flavor mixing
 - Normal hierarchy (NH) multi-flavor mixing

"Realistic" multi-flavour mixing models consistent with neutrino oscillations data

Model	x_e	x_{μ}	$x_{ au}$
1SFH (e)	1	0	0
$1\mathrm{SFH}(\mu)$	0	1	0
2QDH(IH)	1/3	1/3	1/3
2QDH(NH)	0.06	0.48	0.46

Heavy Neutral Leptons **Dirac HNL Single Flavor Mixing**

Heavy Neutral Leptons **Dirac HNL Multi-Flavor Mixing**

Heavy Neutral Leptons Majorana HNL Single Flavor Mixing

Heavy Neutral Leptons **Majorana HNL Multi-Flavor Mixing**

Heavy Neutral Leptons Majorana HNL e-only Mixing Summary

Jets in the Muon System **DV Reconstruction Efficiency**

