

FACULTY OF MATHEMATICS AND PHYSICS Charles University

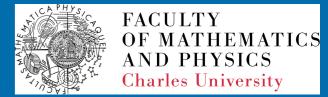
Couplings of axion-like particles in linear and chiral EFT realisations

with Maeve Madigan, Alexandre Salas-Bernardez, Veronica Sanz and Maria Ubiali

> <u>JHEP 09 (2023) 063</u> || arxiv:2303.17634 JHEP 10 (2024) 164 || arxiv:2404.08062

Fabian Esser IPNP Charles University Prague

Moriond EW 2025 26.03.2025


Welcome to the ALP adventure!

Axion-Like Particles (ALPs)

FACULTY OF MATHEMATICS AND PHYSICS Charles University

- ALPs appear as pseudo Goldstone bosons in many SM extensions with a spontaneous breaking of a global symmetry at scale f_a
- shift symmetry $a \rightarrow a + c$, couplings momentum dependent
- focus on ALP-fermion and ALP Higgs couplings in a large mass range
- ALP associated with a heavy new scale $f_a \gg v$
 - ⇒ Effective Field Theory approach
 - \rightarrow which EFT to use?

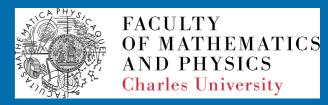
Linear ALP EFT

- As in SMEFT, start from a linear realisation of EW symmetry, i.e. with a Higgs doublet H $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_a$
- Expand in powers of a/f_a , NLO has one insertion

$$\mathcal{L}_a = \frac{1}{2} (\partial_\mu a) (\partial^\mu a) + \frac{1}{2} m_a^2 a^2 + c_{\tilde{W}} \mathcal{A}_{\tilde{W}} + c_{\tilde{B}} \mathcal{A}_{\tilde{B}} + c_{\tilde{G}} \mathcal{A}_{\tilde{G}} + \sum_{f=u,d,e,Q,L} c_f \mathcal{A}_f$$

- couplings to gauge bosons:
- couplings to fermions:
- for top quark using EOM:

$$\mathcal{A}_{\tilde{X}} = -\frac{a}{f_a} X^a_{\mu\nu} \tilde{X}^{\mu\nu,a}$$
$$\mathcal{A}_f = \frac{\partial_\mu a}{f_a} \bar{f} \gamma^\mu f$$
$$\mathcal{L} \supset -ic_t \frac{m_t a}{2f_a} \left(\bar{t} \gamma^5 t \right)$$

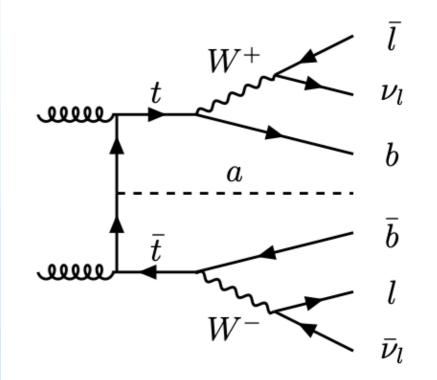

Couplings are proportional to the fermion mass!

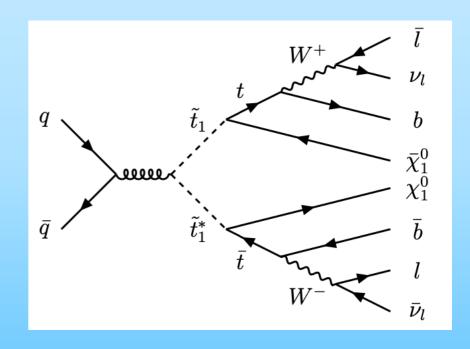
Couplings to vector bosons are generated at 1-loop level

 \Rightarrow Focus on ALP-top coupling c_t and set all other couplings to zero

[Bonilla, Brivio, Gavela, Sanz, 2021]

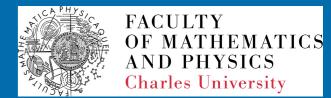
Direct constraints on C_t

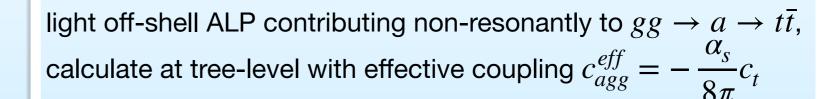



- signal process: $t\overline{t} + a$ production with leptonic top decay
- assume ALP collider stable, escapes the detector as missing transverse energy (MET)
- Reinterpret a Run II ATLAS SUSY search for top squarks in events with 2 leptons, 2 b-jets and MET [2102.134929]
- SUSY benchmark: pair production of stops with prompt decay into top quarks and neutralinos
- same final state topology 2l + 2j + MET

with $MET = \begin{cases} \nu & SM \\ \nu + a & ALP \\ \nu + \tilde{\chi}^0 & SUSY \end{cases}$

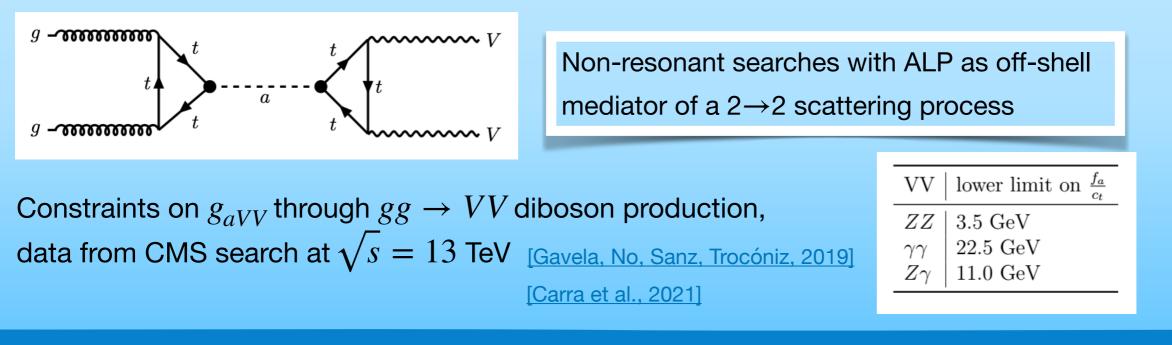
• use ALP EFT UFO file and MadGraph5 to generate events





Fabian Esser

Indirect constraints on C_{f}


1. CMS: $m_{t\bar{t}}$ distribution in the lepton + jets channel, Run-II data [2108.02803]

2. ATLAS: p_T spectrum of the boosted hadronically decaying top-quark [2202.12134]

B. ALP mediated diboson production

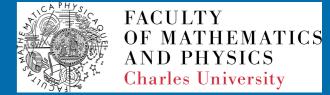
g **-**mmmm

g **-**mmm

Chiral ALP EFT

• As for HEFT, start from non-linear realisation of EW symmetry $\Rightarrow \mathscr{L} = \mathscr{L}_{HEFT}^{LO} + \mathscr{L}_{a}$

$$\mathcal{L}_{a} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + c_{2D} \mathcal{A}_{2D}(h) + c_{\tilde{W}} \mathcal{A}_{\tilde{W}} + c_{\tilde{B}} \mathcal{A}_{\tilde{B}} + c_{\tilde{G}} \mathcal{A}_{\tilde{G}} + \sum_{i=1}^{17} c_{i} \mathcal{A}_{i}(h)$$


[Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz '17]

• many more terms at NLO, all with arbitrary Higgs polynomial functions $\mathcal{F}_i(h) = 1 + a_i h/v + b_i (h/v)^2 + \dots$

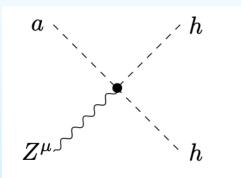
$$\begin{aligned} \mathcal{A}_{2D}(h) &= iv^{2} \mathrm{Tr}[\mathbf{T}\mathbf{V}_{\mu}]\partial^{\mu}\frac{a}{f_{a}}\mathcal{F}_{2D}(h) \\ \mathcal{A}_{1}(h) &= \frac{i}{4\pi}\tilde{B}_{\mu\nu}\mathrm{Tr}[\mathbf{T}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{1}(h) \\ \mathcal{A}_{2}(h) &= \frac{i}{4\pi}\mathrm{Tr}[\tilde{W}_{\mu\nu}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{2}(h) \\ \mathcal{A}_{2}(h) &= \frac{i}{4\pi}\mathrm{Tr}[\tilde{W}_{\mu\nu}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{2}(h) \\ \mathcal{A}_{3}(h) &= \frac{i}{4\pi}\mathrm{Tr}[\tilde{W}_{\mu\nu}\mathcal{V}^{\mu}]\partial^{\mu}\frac{a}{f_{a}}\mathcal{F}_{2}(h) \\ \mathcal{A}_{3}(h) &= \frac{1}{4\pi}B_{\mu\nu}\partial^{\mu}\frac{a}{f_{a}}\partial^{\nu}\mathcal{F}_{3}(h) \\ \mathcal{A}_{4}(h) &= \frac{i}{(4\pi)^{2}}\mathrm{Tr}[\mathbf{V}_{\mu}\mathbf{V}_{\nu}]\mathrm{Tr}[\mathbf{T}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{4}(h) \\ \mathcal{A}_{5}(h) &= \frac{i}{(4\pi)^{2}}\mathrm{Tr}[\mathbf{V}_{\mu}\mathbf{V}_{\nu}]\mathrm{Tr}[\mathbf{T}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{5}(h) \\ \mathcal{A}_{6}(h) &= \frac{1}{4\pi}\mathrm{Tr}[\mathbf{T}[W_{\mu\nu},\mathbf{V}^{\mu}]]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{6}(h) \\ \mathcal{A}_{7}(h) &= \frac{i}{(4\pi)^{2}}\mathrm{Tr}[\mathbf{T}\tilde{W}_{\mu\nu}]\mathrm{Tr}[\mathbf{T}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{7}(h) \\ \mathcal{A}_{8}(h) &= \frac{i}{(4\pi)^{2}}\mathrm{Tr}[[\mathbf{V}_{\nu},\mathbf{T}]\mathcal{D}_{\mu}\mathbf{V}^{\mu}]\partial^{\nu}\frac{a}{f_{a}}\mathcal{F}_{8}(h) \end{aligned}$$

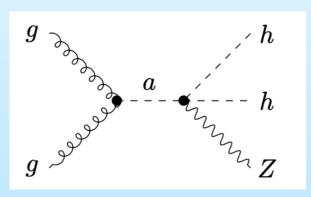
Fabian Esser

Chiral ALP EFT

• As for HEFT, start from non-linear realisation of EW symmetry $\Rightarrow \mathscr{L} = \mathscr{L}_{HEFT}^{LO} + \mathscr{L}_{a}$

$$\mathcal{L}_{a} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) + c_{2D} \mathcal{A}_{2D}(h) + c_{\tilde{W}} \mathcal{A}_{\tilde{W}} + c_{\tilde{B}} \mathcal{A}_{\tilde{B}} + c_{\tilde{G}} \mathcal{A}_{\tilde{G}} + \sum_{i=1}^{17} c_{i} \mathcal{A}_{i}(h)$$


[Brivio, Gavela, Merlo, Mimasu, No, del Rey, Sanz '17]


• many more terms at NLO, all with arbitrary Higgs polynomial functions $\mathcal{F}_i(h) = 1 + a_i h/v + b_i (h/v)^2 + \dots$

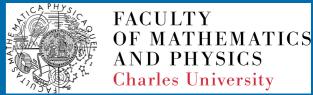
Fabian Esser

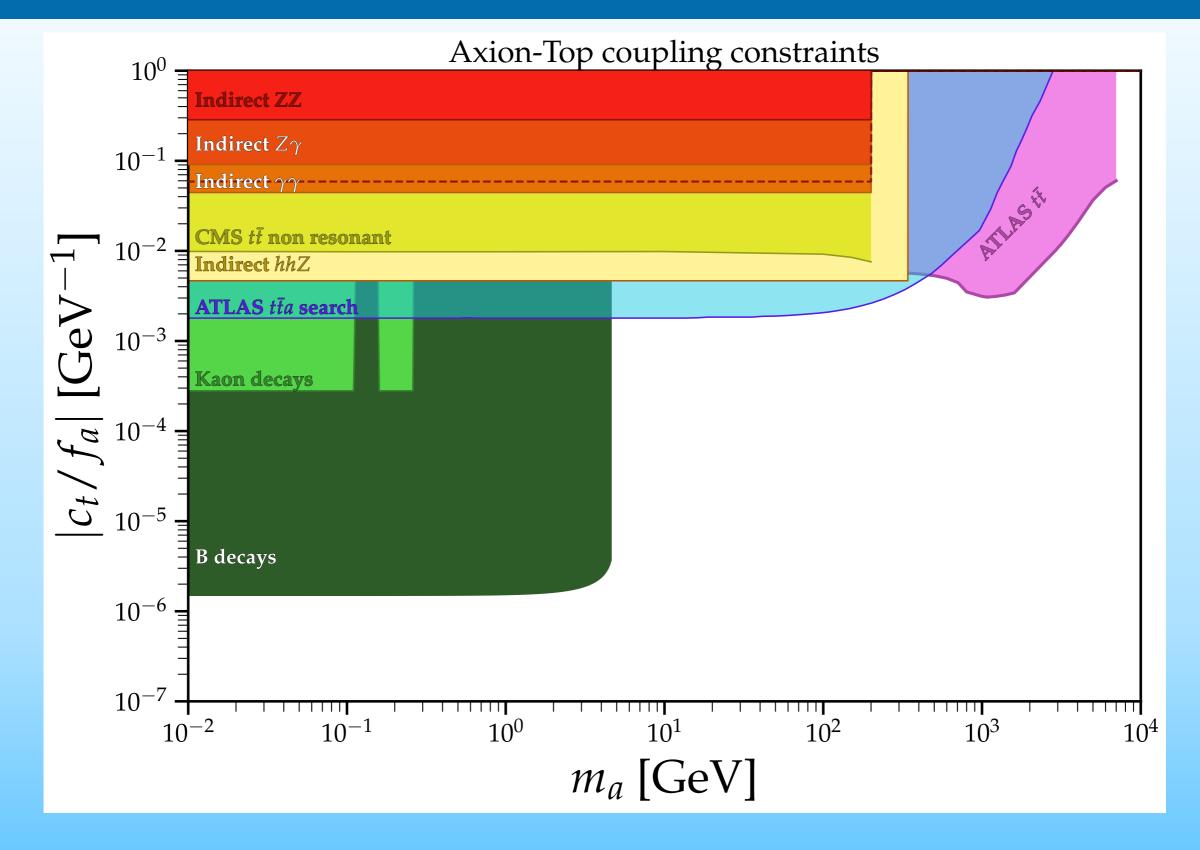
ALP-Higgs couplings in chiral ALP EFT

ALP-mediated Di-Higgs + Z production from gluon fusion is TREE LEVEL in chiral ALP EFT, effective coupling c

- Use ATLAS di-Higgs searches in the $b\bar{b}\gamma\gamma$ final state 2310.12301, no veto on MET ($Z \rightarrow \nu\nu$)
- simplest benchmark scenario: all \tilde{a}_i and \tilde{b}_i equal 1
- generate events in MadGraph, limits on f_a from χ^2 in high mass region:

 $f_a > 0.53\sqrt{c} \text{ TeV}$

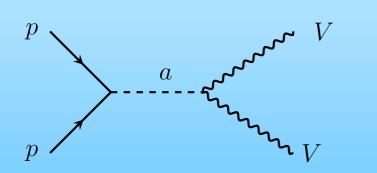

• we can recast chiral ALP EFT limits into limits on c_t in the linear EFT using top loops

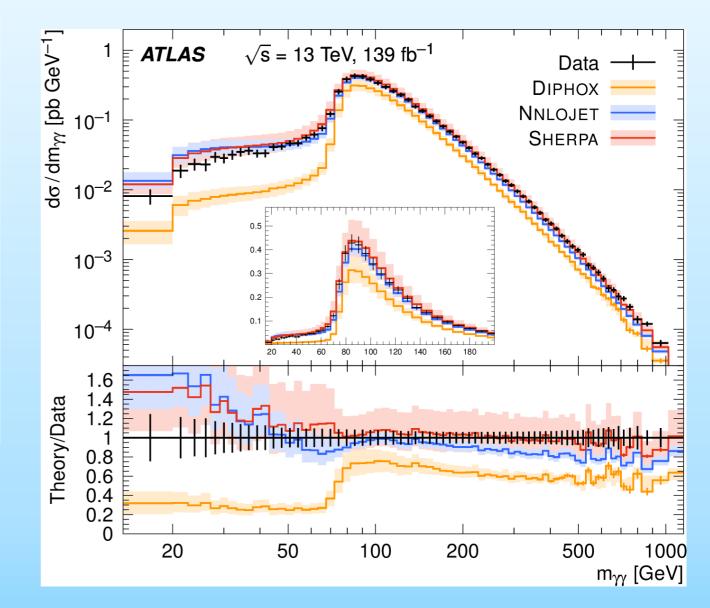

$$rac{c}{f_a^2}\simeq rac{lpha_s}{8\pi c_W}rac{c_t^2}{f_a^2}$$

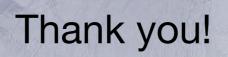
g ended t t t t t t t z t t t h

Fabian Esser

Summary

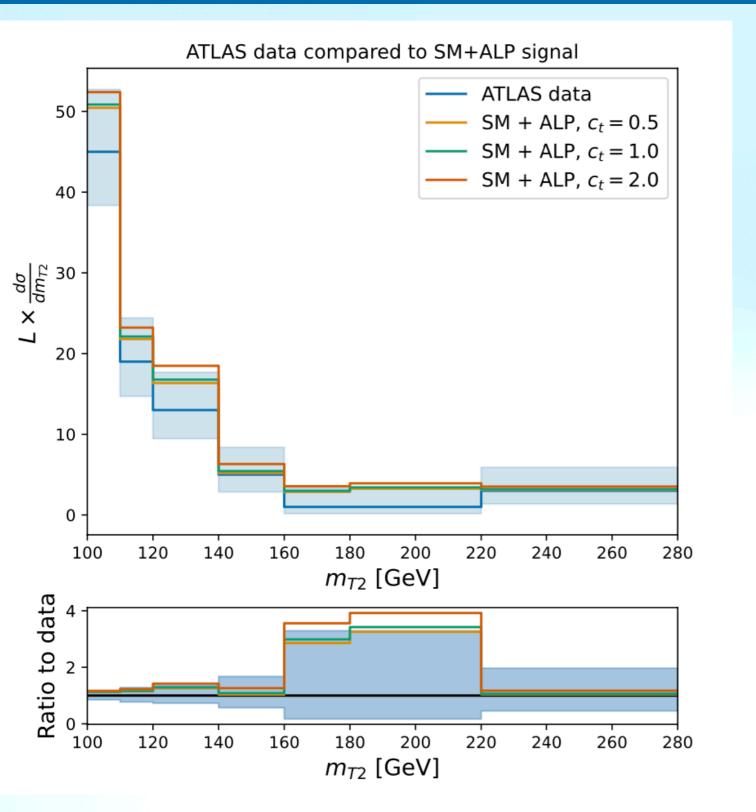

Fabian Esser


Outlook


Global fit to multiboson final states, first in the linear ALP EFT (WIP)

vertex	Feynman Rule in linear ALP EFT
$a\gamma\gamma$	$-\frac{4i}{f_a} \left(c_{\theta}^2 c_{\tilde{B}} + s_{\theta}^2 \mathbf{c}_{\tilde{\mathbf{W}}} \right) \epsilon^{\mu\nu\rho\sigma} \left(p_{\gamma 1} \right)_{\rho} \left(p_{\gamma 2} \right)_{\sigma}$
$a\gamma Z$	$\frac{2i}{f_a} s_{2\theta} \left(\mathbf{c}_{\tilde{\mathbf{B}}} - \mathbf{c}_{\tilde{\mathbf{W}}} \right) \epsilon^{\mu\nu\rho\sigma} \left(p_Z \right)_{\rho} \left(p_{\gamma} \right)_{\sigma}$
aZZ	$-\frac{4i}{f_a} \left(s_\theta^2 \mathbf{c}_{\tilde{\mathbf{B}}} + c_\theta^2 \mathbf{c}_{\tilde{\mathbf{W}}} \right) \epsilon^{\mu\nu\rho\sigma} \left(p_{Z1} \right)_\rho \left(p_{Z2} \right)_\sigma$
aW^+W^-	$-rac{4i}{f_a} {f c}_{{f {f W}}} \epsilon^{\mu u ho\sigma} \left(p_{W^+} ight)_ ho \left(p_{W^-} ight)_\sigma$
agg	$-\frac{4i}{f_a} \mathbf{c}_{\tilde{\mathbf{G}}} \delta_{ab} \epsilon^{\mu\nu\rho\sigma} \left(p_{g1} \right)_{\rho} \left(p_{g2} \right)_{\sigma}$
$a\gamma W^+W^-$	$\frac{4ie}{f_a} \mathbf{c}_{\tilde{\mathbf{W}}} \epsilon^{\mu\nu\rho\sigma} \left(p_{WW\gamma} \right)_{\sigma}$
aZW^+W^-	$\frac{4ie}{f_a}\frac{c_{\theta}}{s_{\theta}}\mathbf{c}_{\tilde{\mathbf{W}}}\epsilon^{\mu\nu\rho\sigma}\left(p_{WWZ}\right)_{\sigma}$
aggg	$\frac{4}{f_a}g_s \mathbf{c}_{\tilde{\mathbf{G}}} f_{abc} \epsilon^{\mu\nu\rho\sigma} \left(p_{ggg}\right)_{\sigma}$

invariant mass distribution in the di-photon final state [2107.09330]

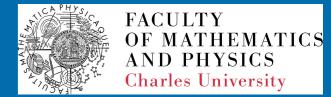


FACULTY OF MATHEMATICS AND PHYSICS Charles University

Back-up slides

Fabian Esser

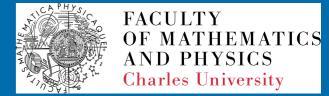
ALP signal


- compare ALP signal + SM background for different c_t to data
- MadGraph and SM background uncertainties negligible compared to experimental uncertainties
- $t\bar{t}a$ vertex proportional to c_t/f_a , global factor $(c_t/f_a)^2$ in the signal events
- Assume a Poisson likelihood

$$\mathcal{L}(c_t) = \prod_{k=1}^{N_{\text{bins}}} \frac{\exp\left(-\left(\left(\frac{c_t}{f_a}\right)^2 s_k + b_k\right)\right)\right) \left(\left(\frac{c_t}{f_a}\right)^2 s_k + b_k\right)^{n_k}}{n_k!}$$

 use the profile likelihood ratio to obtain limits on c_t:

Stransverse mass


ATLAS: measurement of the stranverse mass m_{T2} distribution in the 2l + 2j + MET final state with different lepton flavours:

$$m_{T2}(\vec{p}_{T1}, \vec{p}_{T2}, \vec{p}_{T}^{miss}) = \min_{\vec{q}_{T1} + \vec{q}_{T2} = \vec{p}_{T}^{miss}} \left(\max\left[m_{T}(\vec{p}_{T1}, \vec{q}_{T}), m_{T}(\vec{p}_{T2}, \vec{q}_{T2}) \right] \right)$$

neutrinos

with transverse mass of lepton-neutrino pairs

$$m_T(\vec{p}_T, \vec{q}_T) = \sqrt{2 |\vec{p}_T| |\vec{q}_T| (1 - \cos(\Delta \Phi))}$$

Summary of constraints from Run-II data

ALPs: current collider constrains for different choices of $|c_t|$ Direct limit 55 552 1000 87197 (ATLAS *tīa* search) Indirect limit 169 2000 17 26765 (ATLAS $t\bar{t}$, p_T distribution) Indirect limit 103 2900 16280 10 (CMS $t\bar{t}$, $m_{t\bar{t}}$ distribution) Loop-induced limit 23 2.3 3569 2500 from $g_{a\gamma\gamma}$ in [1905.12953] Loop-induced limit 1.1 180 11 1737 from *g_{aZv}* in [2106.10085] Loop-induced limit 0.4 3.5 553 2000 from *g*_{*aZ7*} in [1905.12953] Loop-induced limit $c_t = 0.1$ 2685 3000 1.7 17 from *g_{aZZ}* in [2111.13669] $c_t = 1$ $c_t = (4\pi)^2$ 100 1 10 1,000 10,000 100,000 $f_a(GeV)$

red dashed lines: EFT validity limits

Fabian Esser