

Encoding off-shell effects in top pair production in direct diffusion networks

Anja Butter^{1,3}, Tomáš Ježo², Michael Klasen², **Mathias Kuschick**², Sofia Palacios Schweitzer¹ and Tilman Plehn¹

Institut für Theoretische Physik, Universität Heidelberg, Germany
Institut für Theoretische Physik, Universität Münster, Germany
LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France

institut für theoretische physik

MORIOND EW 26.03.2025

living.knowledge

Motivation

- Basis of every LHC analysis: Fast and precise predictions of event kinematics from first principles
- Two main challenges:
 - Conceptual problems to overcome: e.g. dealing with loop diagrams with many scales
 - Technical problems: increased precision comes with higher computational cost
- In this talk (and the corresponding paper) we focus on off-shell effects
 - Given the precision targets of the upcoming LHC runs, approximate decay modelling is not justified
 - High computational cost of exact calculation
 - Can a neural network encode the exact calculation of full off-shellness with the purpose to make it easier to use, more efficient, to store and publish results etc.

Off-shell effects in MC event generation

• Proof of concept: top pair production and dileptonic decay (LO in QCD)

- Generated data for training a transformation of "on-shell" to off-shell events:
 - hvq data includes only approx. off-shell effects using finite top width

Off-shell effects in MC event generation

• Proof of concept: top pair production and dileptonic decay (LO in QCD)

- Generated data for training a transformation of "on-shell" to off-shell events:
 - hvq data includes only approx. off-shell effects using finite top width
 - bb4l data includes full off-shell effects (including e.g non-resonant effects)

The deviation between approx. and full off-shell calculation

The Direct Diffusion network

• Off-Shell event $x_{off}(t=0)=x_0$, on-shell events $x_{on}(t=1)=x_1$ respectively

[arXiv:2209.15571, arXiv:2210.02747, arXiv:2209.03003, arXiv:2305.10475v2]

The Direct Diffusion network

• Off-Shell event $x_{off}(t=0)=x_0$, on-shell events $x_{on}(t=1)=x_1$ respectively

[arXiv:2209.15571, arXiv:2210.02747, arXiv:2209.03003, arXiv:2305.10475v2]

Results of the Direct Diffusion network

Results after an additional Reweighting

Conclusion & Outlook

- Small network with limited training effort can reproduce the target off-shell kinematics at the 10% level or better with only 5 million events
- Classifier reweighting improves its precision to the level of few percent even in challenging kinematic distributions
- LO-Paper: Kicking it Off(-shell) with Direct Diffusion [arXiv:2311.17175]
- NLO works well but is more complicated
- Outlook: Analyze impact on showering

Backup slides: NLO results

