

Searches for direct slepton production in the compressed-mass corridor

Moriond Electroweak - 26/3/25

Based on the paper submitted to JHEP: <u>arXiv:2503.17186</u>

Alessandro Ruggiero (<u>alessandro.ruggiero@cern.ch</u>)

On behalf of the ATLAS collaboration

ATLAS Preliminary

 \sqrt{s} = 13 TeV, 140 fb⁻¹

 $pp
ightarrow \, \tilde{\ell}^+_{L,R} \tilde{\ell}^-_{L,R}, \; \tilde{\ell}
ightarrow \ell \tilde{\chi}^0_1$

All limits at 95% CL Observed limits Expected limit

200

300

400

July 2024

arXiv 1908 08215

[1]

700

 $m(\tilde{\ell}_{L,R})$ [GeV]

800

8 TeV, 20.3 fb

 $2\ell, \Delta m \approx m(W)$

LEP $\tilde{\mu}_{B}$ excluded

500

 2τ hadronic

 $\tilde{\ell} \in [\tilde{e}, \tilde{u}]$

 $\tilde{\ell} \in [\tilde{e}, \tilde{\mu}]$

600

Soft 2ℓ 2ℓ

Motivation

Still interesting regions of SUSY parameter space to explore!

600

500

400

300

200

100

 A large gap in slepton $n(\tilde{\chi}_1^0)$ [GeV] exclusion at small mass splitting: $\Delta m(\tilde{l}, \chi_1^0) < m_w$

Why here?

- No sensitivity for a range of models since LEP
- Light smuons explain g-2
- The lightest neutralino (χ_1^0) is a Dark Matter candidate

Aim: use the ATLAS Run 2 dataset and ML techniques to cover this region

100

Analysis strategy

Target process

- 2 same flavour opposite sign leptons (e or μ)
 - Jet from initial state radiation
 - Large missing transverse energy

Analysis strategy

Target process

BDT Approach

- Train 5 BDTs on different signal models, grouped based on $\Delta m(\tilde{l}, \chi_1^0)$
- Maximise sensitivity to the simplified models

Also have a cut-based approach but no time to talk about it here

59th Rencontres de Moriond 2025

Analysis strategy

Target process

BDT Approach

- Train 5 BDTs on different signal models, grouped based on $\Delta m(\tilde{l}, \chi_1^0)$
- Maximise sensitivity to the simplified models

Background estimate

- Use BDT score to define:
- 3 e^+e^- and 3 $\mu^+\mu^-$ SRs per BDT
- Individual CRs defined for each BDT, to target major bkgs (top, diboson) and extract normalisation factors.
- Dedicated VRs for each BDT to validate bkg estimate

Largest deviation in: BDT - SR3^{ee}₄₀₊₅₀

Single SR significance: 2.0σ

BDT SRs

Post-fit, CR only results

DXFORD

Largest deviation in: BDT – SR3^{ee}₄₀₊₅₀

Single SR significance: 2.0σ

BDT SRs

Post-fit, CR only results

Largest deviation in: BDT – $SR_{5+10}^{\mu\mu}$

Largest **single** SR significance: 2.4σ

Ruggiero

Alessandro Ruggiero

$BDT - SR_{5+10}^{\mu\mu}$: A closer look

- Kinematic distributions of $SR_{5+10}^{\mu\mu}$ 1,2,3 combined, with example signal models
- Events characterised as: back-to-back in ϕ , di-muon invariant mass pprox 20-30 GeV

Not seen in $BDT - SR_{5+10}^{ee}$ or the dedicated VRs, and orthogonal to cut and count.

Interpretations

- In each interpretation, simultaneous CR+SR fits to extract a CLs for each signal model
 - Contours interpolated using the BDT SRs with the best expected CLs.
 - A "discovery" significance is also calculated for each signal model.

Selectron only interpretation

Interpretations

- In each interpretation, simultaneous CR+SR fits to extract a CLs for each signal model
 - Contours interpolated using the BDT SRs with the best expected CLs.
 - A "discovery" significance is also calculated for each signal model.

Ruggiero

Conclusion

Presented results from ATLAS search for sleptons in the compressed mass corridor: <u>arXiv:2503.17186</u>

With a couple of interesting excesses, favouring: $\Delta m(\tilde{e},\chi_1^0)$ 40 GeV $\Delta m(\tilde{\mu}, \chi_1^0)$ 10 GeV UNIVERSITY OF

DXFORD

Backup

59th Rencontres de Moriond 2025

CR summary plot

59th Rencontres de Moriond 2025

Cut and count approach

59th Rencontres de Moriond 2025

Cut and count VRs

Alessandro UNIVERSITY OF DXFORD

Ruggiero

 $CC - SR^{\mu\mu}$

59th Rencontres de Moriond 2025

Additional BDT material

59th Rencontres de Moriond 2025

Excess SR tables

Table 17: Summary of observed and predicted yields in SR-BDT₅₊₁₀ using the CR-only fit. The category 'Other' contains rare backgrounds from processes such as $t\bar{t}V$, multi-top and triboson production. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.

SR	SR1-BDT ^{ee} 5+10	SR2-BDT ^{ee} 5+10	SR3-BDT ^{ee} 5+10	$\text{SR1-BDT}^{\mu\mu}_{5+10}$	$\text{SR2-BDT}^{\mu\mu}_{5+10}$	$\text{SR3-BDT}^{\mu\mu}_{5+10}$
Observed	10	11	5	23	26	4
Fitted SM events	12.3 ± 3.1	10.6 ± 2.5	3.5 ± 1.0	13.7 ± 2.6	13.7 ± 2.6	3.9 ± 1.1
Тор	3.0 ± 0.9	2.1 ± 0.5	0.62 ± 0.19	3.7 ± 0.8	3.3 ± 0.7	1.10 ± 0.27
Diboson	4.3 ± 1.9	4.3 ± 1.7	1.6 ± 0.7	4.5 ± 1.9	5.8 ± 2.3	2.5 ± 1.0
Fake/Non-Prompt	4.5 ± 2.3	3.7 ± 1.9	1.2 ± 0.8	4.9 ± 1.6	3.5 ± 1.3	$0.3^{+0.4}_{-0.3}$
Other	0.6 ± 0.4	0.50 ± 0.35	0.09 ± 0.05	0.6 ± 0.5	1.1 ± 0.6	0.05 ± 0.04

Table 20: Summary of observed and predicted yields in SR-BDT₄₀₊₅₀ using the CR-only fit. The category 'Other' contains rare backgrounds from processes such as $t\bar{t}V$, multi-top and triboson production. Uncertainties in the fitted background estimates combine statistical and systematic uncertainties.

SR	SR1-BDT ₄₀₊₅₀	SR2-BDT ₄₀₊₅₀	SR3-BDT ^{ee} ₄₀₊₅₀	$\text{SR1-BDT}^{\mu\mu}_{40+50}$	$\text{SR2-BDT}^{\mu\mu}_{40+50}$	$\text{SR3-BDT}^{\mu\mu}_{40+50}$
Observed	9	6	7	3	9	4
Fitted SM events	8.2 ± 2.0	6.2 ± 1.4	2.8 ± 0.8	9.1 ± 1.9	6.3 ± 1.2	3.2 ± 0.7
Тор	2.7 ± 1.2	2.6 ± 1.2	0.5 ± 0.4	3.7 ± 1.6	1.9 ± 1.0	0.53 ± 0.28
Diboson	3.8 ± 1.2	3.4 ± 0.8	2.1 ± 0.5	5.3 ± 1.1	4.2 ± 0.8	2.6 ± 0.5
Fake/Non-Prompt	$1.2^{+1.3}_{-1.2}$	$0.01^{+0.31}_{-0.01}$	$0.01^{+0.31}_{-0.01}$	$0.00^{+0.15}_{-0.00}$	$0.01^{+0.18}_{-0.01}$	$0.04^{+0.09}_{-0.04}$
Other	0.41 ± 0.25	0.28 ± 0.24	0.15 ± 0.08	$0.16^{+0.22}_{-0.16}$	$0.22^{+0.23}_{-0.22}$	0.07 ± 0.05

59th Rencontres de Moriond 2025

BDT VR summary

59th Rencontres de Moriond 2025

Additional BDT – $SR_{5+10}^{\mu\mu}$ plots

Alessandro

Ruggiero

$BDT - SR_{5+10}^{ee}$ plots

Alessandro

Ruggiero

$BDT - SR_{5+10}^{ee}$ plots

Alessandro

Ruggiero

Additional BDT – SR_{40+50}^{ee} plots

Alessandro

Ruggiero

Additional BDT – SR_{40+50}^{ee} plots

Alessandro

Ruggiero

Exclusion comparison

Alessandro

Ruggiero