Searches in the Top Sector

Binbin Dong

On behalf of the ATLAS and CMS Collaborations

59th Rencontres de Moriond 23 - 30 March, 2025

Introduction

- The Top quark a unique window to new physics • Heaviest fundamental particle \rightarrow strongly coupled to the Higgs boson • Top Yukawa coupling $\sim 1 \rightarrow$ special role in electroweak symmetry breaking Short lifetime, decay before hadronization
- Many BSM theories predict strong top interactions
 - Heavy resonances, composite Higgs, vector-like quarks \rightarrow direct searches • There is a good chance that new physics is heavy, not enough energy to
 - produce it yet at the LHC
 - Indirect searches are needed \rightarrow SMEFT opens new directions

- Search for new spin-0 (pseudo) scalars in $t\bar{t}$ final states
 - (Pseudo-)scalar boson mass from 365 1000 GeV
 - Two orthogonal channels considered: dilepton and lepton+jets
- Strong interference with the SM $t\bar{t}$ process leads to a peak-dip structure
 - Pattern is strongly model dependent

Dilepton channel

- Invariant $t\bar{t}$ mass spectrum
- 2 spin correlation observables constructed from tops and leptons

CMS-HIG-22-013

 Φ

goood

guur

 W^+

- Search for new spin-0 (pseudo) scalars in $t\bar{t}$ final states
 - (Pseudo-)scalar boson mass from 365 1000 GeV
 - Two orthogonal channels considered: dilepton and lepton+jets
- Strong interference with the SM $t\bar{t}$ process leads to a peak-dip structure
 - Pattern is strongly model dependent

Dilepton channel

- Invariant $t\bar{t}$ mass spectrum
- 2 spin correlation observables constructed from tops and leptons

Lepton+jets channel

- Invariant $t\bar{t}$ mass spectrum
- -2D binning with $m_{t\bar{t}} \cdot |cos\theta^*|$
 - θ^* : angle between the lepton in the $t\bar{t}$ rest system and the $t\bar{t}$ in the lab frame

- Major irreducible background: SM $t\bar{t}$
 - Predictions differentially corrected to NNLO in QCD and NLO in EW

- Excess at low m_{tt} observed
 - Consistent with effects from $t\bar{t}$ bound-state

 - Measured cross section agreeing with prediction from non-relativistic QCD

CMS-HIG-22-013

$$\sigma(\eta_t) = 7.1 \pm 0.8 \,\mathrm{pb}$$

Ratio to

- Simpflied model of color-singlet pseudo-scalar for interpretation (PRD 104 (2021) 3, 034023)

$$\sigma(\eta_t)^{\text{pred}} = 6.43 \,\text{pb}$$

- Simultaneous fit of A/H to data
- Excess best compatible with pseudo-scalar hypothesis

CMS-HIG-22-013

Search for $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$

- $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$ events feature high jet and b-jet multiplicities
 - Search in 2LSS/ML done in JHEP 07 (2023) 203
 - New search results in 1L/2LOS channel
 - Motivated by the enhanced cross section in the SM $t\bar{t}t\bar{t}$ measurement by <u>ATLAS</u>
- Main background: $t\bar{t}$ + jets
- *I*ain background: $t\bar{t}$ + jets- b-tagging requirements to enhance separation between to enhance separation between to the separation between the separation between
 - $t\bar{t}$ +jets background modelling
 - Flavour rescaling factors correct overall normalisation of $t\bar{t} + \geq 1b$, $t\bar{t} + \geq 1c$ and $t\bar{t} + \geq 1c$ light
 - NN used for multi-dimensional kinematic reweighting, train as data vs *tt* simulation

Search for $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$

- Mass-parameterised GNN to optimize the signal-background discrimination
- SM $t\bar{t}t\bar{t}$ cross-section is fixed to the prediction in the final fit
- Small excess in the observed
 - 2.1 standard deviation observed at $m_{H/A} = 500 \text{ GeV}$
 - Interpretation done on $S_8S_8 \to t\bar{t}t\bar{t}$, excluded $m_{S_\circ} < 1.4~{\rm TeV}$
- Combined with 2LSS/ML results
 - 2LSS/ML drives the sensitivity
 - A larger improvement in the sensitivity due to combination in the high mass regime

Vector-like Quarks

- First search of T and Y vector-like quarks (VLQ) in fully hadronic final state
- Mass of VLQ reconstructed as the discriminating variable
 - Requires at least one large-R, one small-R jet
 - Mass defined as vector sum of the four momenta of the leading large-R and leading small-R jets
- Signal explored in T-quark mass from 1 2.7 TeV
 - Large angular separation of the two leading jets

- Main background: QCD multi-jet production
 - data-driven: ABCD method
 - bin-by-bin corrections are applied to the m_{VLO} distribution

Vector-like Quarks

- No significant excess observed
- Interpretation performed on κ as a function of Y VLQ mass

- Lower limits are set on the mass of T/Y-VLQ with global coupling parameter as $\kappa = 0.5$, $\kappa = 0.7$

EFT based Searches

- SM Effective Field Theory (EFT) is a powerful tool to study effects from BSM phase space not directly accessible at the LHC. \mathcal{L}_{i} Wilson coefficients (WCs) $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i=1}^{d} \mathcal{O}_{i}^{d}$ Higher dimension operators
- EFTs induce effects in many channels, ideal framework for combination!
- - "multilepton analysis": $t\bar{t}lv, t\bar{t}ll, t\bar{t}H, t\bar{t}t\bar{t}, tHq$, and $tllq \longrightarrow$ at least two leptons

 c_{tW}

 C_{tZ}

 $C_{bW'}$

modification to the top Yukawa coupling

 $C_{\varphi tb}$ couples the t and b via the Higgs field

couple third generation quarks to the W/Z before electroweak symmetry breaking

WCs of interest:

- modifications to the high-pT tails in the t, H, W, and Z spectra
- couple third generation quarks to the Higgs field

Multilepton is the main driver of the combination

Combined EFT interpretation

Broader combination, covering multiple sectors via simultaneous likelihood fit

15

SMP-24-003

EFT based Searches

- Extension of the EFT programme to measure the quark couplings with a Z boson
 - Simultaneously measure it for 1st, 2nd vs 3rd generation quarks
 - Probed in ttZ, WZ and ZZ processes

Summary

- physics in top sector
- Explored both direct and indirect searches

 - Significant excess in the search for (pseudo-)scalar $t\bar{t}$ production at CMS • Results well compatible with contributions from $t\bar{t}$ bound states
- An exciting search program for Run 3 awaits

Presented an overview of recent ATLAS and CMS results of searches for new

Lepton+jets channel

- Require one lepton, \geq 3 jets, \geq 2 b-jets
- Split into 4 categories:
 - e vs μ
 - 3 jets vs \geq 4 jets
- Reconstruct $t\bar{t}$ with <u>NeutrinoSolver</u> algorithm
- 2D binning with $m_{t\bar{t}} \cdot |cos\theta^*|$
 - θ^* : scattering angle of leptonic top quark

CMS-HIG-22-013

Dilepton channel

- Require two OS leptons, \geq 2 jets, \geq 1 b-jets
- Split by lepton flavour: ee, $e\mu$ and $\mu\mu$
- Analytic reconstruction of $t\bar{t}$ system:
- Assumption: tops/Ws on-shell
- Assign b jets using likelihood based on m_{lb}

- Uncertainty on bound state cross section dominated by background modelling
- Leading systematics sources:
 - EW corrections, including SM top Yukawa coupling
 - Parton showe scale
 - Missing higher orders
 - PDF
 - Top mass

CMS-HIG-22-013

Search for $t\bar{t}A/H \rightarrow t\bar{t}t\bar{t}$

• NN used for multi-dimensional kinematic reweighting, trained as data vs $t\bar{t}$ simulation

$$O(\mathbf{x}) = P(\text{data}|\mathbf{x}) = \frac{1}{\alpha_{\text{dat}}}$$

Event-by-event reweighting factor:

VLQs

- Main background: QCD multijet
 - data-driven: ABCD method
 - bin-by-bin correction factor applied

 $N_{A/A1}^{\text{multijet estimate}}[i] = R_{\text{corr}}[i] \times (N_{\text{B}}^{\text{Data}}[i] - N_{\text{B}}^{\text{SM N}}$

$$\frac{(N_{D/D1}^{\text{Data}}[i]) \times \frac{(N_{D/D1}^{\text{Data}}[i] - N_{D/D1}^{\text{SM MC backgrounds}}[i])}{(N_{C}^{\text{Data}}[i] - N_{C}^{\text{SM MC backgrounds}}[i])}$$

EFT based Searches

Other WCs profiled Multilepton analysis

- Δ
- **Boosted analysis** ∇
 - Combination

 \diamond

