

LQ \cdots $\lambda_{\ell q}$ q

Leptoquark searches at ATLAS & CMS

Izaak Neutelings (CERN) on behalf of the ATLAS & CMS Collaborations

izaak.neutelings@cern.ch

Moriond EW 2025, 26/03/2025

Introduction

- the SM has lepton flavor universality (LFU)
- it appear as an "accidental" symmetry
 ⇒ LFU violation would be a clear sign of new physics (NP)
- experimental evidence of LFU violation ?
 - B anomalies: $R(D^{(*)})$, P_{5}° , $B \rightarrow K^{(*)}\nu\nu$, ...
 - muon $g 2 \frac{arXiv:2308.06230}{arXiv:2308.06230}$

Introduction

- the SM has lepton flavor universality (LFU)
- it appear as an "accidental" symmetry
 ⇒ LFU violation would be a clear sign of new physics (NP)
- experimental evidence of LFU violation ?
 - B anomalies: $R(D^{(*)})$, P_{5}^{\prime} , $B \rightarrow K^{(*)}\nu\nu$, ...
 - muon g 2 arXiv:2308.06230

Introduction

- the SM has lepton flavor universality (LFU)
- it appear as an "accidental" symmetry
 ⇒ LFU violation would be a clear sign of new physics (NP)
- experimental evidence of LFU violation ?
 - B anomalies: $R(D^{(*)})$, P_{5}° , $B \rightarrow K^{(*)}\nu\nu$, ...
 - muon $g 2 \frac{arXiv:2308.06230}{2}$
 - \Rightarrow can be explained by **leptoquarks** (LQs)
- LQs naturally arise from many NP models:
 - GUTs like Pati-Salam, 4321 model, ...
 - SUSY with *R*-parity violation
 - compositeness
 - technicolor

0.5

 $q_4 = 3.5, v_3 = 1.2 \text{ TeV}, v_1 = 0.66 \text{ TeV}, \lambda_{c13} = \lambda_{c3} = 2.5,$

M∩=1.6 TeV, MI=0.85 TeV, sn2=0.30, sn3=0.79, sl3=0.81

 $SU(5) \otimes U(1)_X$

SU(5)

 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

LQ models

- scalar or vector boson
- couples to a quark & lepton

 \Rightarrow carries L, B, color, EM charge

LQ models in LHC searches

- scalar or vector boson
- couples to a quark & lepton

 \Rightarrow carries L, B, color, EM charge

- typical model parameters in LHC searches:
 - **1**. *m*_{LQ} ~0.2–10 TeV
 - 2. coupling strength $\lambda_{\ell q}$ to fermions
 - **3. branching fraction** *β* to charged leptons:

 $\mathcal{B}(\mathrm{LQ} \to q\ell) = \beta$ $\mathcal{B}(\mathrm{LQ} \to q'\nu) = 1 - \beta$

4. "non-minimal" coupling *k* to gluons (vector LQ)

• $\kappa = 0$ (minimal coupling)

• $\kappa = 1$ (Yang–Mills)

LQ production at the LHC

similar **final states**: two high- p_T & nonresonant leptons

single & **nonresonant** signals have often been overlooked, but they open a large phase space at large couplings (λ)

single & nonresonant signals have often been overlooked, but they open a large phase space at large couplings (λ)

3000

138 fb⁻¹ (13 TeV)

Nonres.

— Total

Preferred by B anomalies

Vector LQ: $\beta = 1, \kappa = 1$

— Single

— Pair

CMS 2308.07826

95% CL upper limits

68% expected

Observed

···· Expected

The ATLAS & CMS detectors @ LHC, CERN

RANC

CMS

Run-2 pp collision data \sqrt{s} = 13 TeV, ~137-140 fb⁻¹ (for 2016-2018)

ATLAS

CERN Meyrin

LHCb-

CERN Prévessin

Final states covered in Run-2 data:

137-140 fb⁻¹

Pair production

		$\beta = 0.5$			
		jj	CS	tb	
	eν			ATI 2210 04517	
C.U -	μν			<u>ATL 2210.04517</u>	
٩	τν			ATL 2108.07665 CMS 2012.04178	

			p-1,	0	
_		jj	CC NEW] bb	tt
<i>β</i> = 0	νν	<u>CMS 1909.03460</u>	ATL 2410.17824 CMS 1909.03460	ATL 2101.12527 CMS 1909.03460	ATL 2004.14060 CMS 1909.03460
	ee			ATL 2006.05872	ATL 2010.02098
β = 1	μμ		ATL 2006.05872	ATL 2006.05872 CMS 2402.08668	ATL 2306.17642 CMS 2202.08676
	ττ	<u>ATL 230</u>)3.09444	ATL 2108.07665 ATL 2303.01294 CMS 2308.07826	ATL 2101.11582 CMS 2202.08676

0 - 4 0

covers $\tau \tau \rightarrow \mu \mu$, $e\mu$, $e\tau_{had}$, $\mu \tau_{had}$, $\tau_{had} \tau_{had}$ channels

- search for pair production of t/c squarks or LQs
- select signal events
 - e, μ , τ , b-jet veto
 - $-E_{\mathrm{T}}^{\mathrm{miss}}$ > 250 GeV
 - ≥ 2 c-tagged jets
 - $-m_{\rm cc}$ > 200 GeV

ATLAS 2410.17824

Submitted to JHEP

NEW!

 $p_{\rm T} > 150 \,{\rm GeV}$

- search for pair production of t/c squarks or LQs
- select signal events
 - e, μ , τ , b-jet veto
 - $-E_{\mathrm{T}}^{\mathrm{miss}}$ > 250 GeV
 - ≥ 2 c-tagged jets
 - $-m_{\rm cc}$ > 200 GeV
- split into three signal regions with cuts on m_{cc} and E_T^{miss} significance (= $E_T^{miss}/\sigma[E_T^{miss}]$)
- · control backgrounds in events with
 - 1 leptons for W + jets
 - 2 leptons for Z + jets
- extract signal from cut-and-count

- set upper limits on $\sigma(LQ LQ \rightarrow c\nu_{\tau}c\nu_{\tau})$
- set upper limits on $B(LQ \rightarrow c\nu_{e/\mu})$
- masses up to 900 (1150) GeV are excluded for a scalar (vector) LQ

ATLAS 2410.17824

Submitted to JHEP

NEW!

- set upper limits on σ (LQ LQ $\rightarrow c\nu_{\tau}c\nu_{\tau}$)
- set upper limits on $B(LQ \rightarrow c\nu_{e/\mu})$
- masses up to 900 (1150) GeV are excluded for a scalar (vector) LQ

- set upper limits on σ (LQ LQ $\rightarrow c\nu_{\tau}c\nu_{\tau}$)
- set upper limits on $B(LQ \rightarrow c\nu_{e/\mu})$
- masses up to 900 (1150) GeV are excluded for a scalar (vector) LQ

Final states covered in Run-2 data: Sing

Single production

gluon-induced production

	j	С	b(b)(b)	t
ν(ν)	CMS 2107.13021			
e(e)				
eμ	ATL 2112.080	90		
μ(μ)				
τ(ν)				CMS 2012.04178
τ(μq)				ATL 2403.06742 CMS-PAS-TOP-22-011
τ(τ)	<u>CMS 2308.06143</u>		ATL 2305.15962 CMS 2308.07826 CMS 2308.06143	

lepton-induced production

Final states covered in Run-2 data:

Single production

gluon-induced production

lepton-induced production

LQ

au

q

		j	С	b(b)(b)	t	
ion	ν(ν)	CMS 2107.13021				
a	e(e)					
Y	eμ	ATL 2112.080	90			
	μ(μ)					
\sim_{ℓ^+}	τ(ν)				CMS 2012.04178	
	τ(μq)				ATL 2403.06742 CMS-PAS-TOP-22-011	
ℓ^-	τ(τ)	<u>CMS 2308.06143</u>		ATL 2305.15962 CMS 2308.07826 CMS 2308.06143		
ion		first and onl	y lepton-	induced result 138 fb ⁻¹ (13 TeV)	10	38 fb ⁻¹ (13 TeV)
q covers $j = u, d$	d, s, or k	ting strength			the strength of the strength o	
$ au^+$ covers $ au ightarrow$ e,	$\mu, au_{ m had}$ C	channels		Obs. exclusion 95% CL		bs. exclusion 95% CL
falls out of accepta	ance	0	1000 15	00 2000 2500 3000 Leptoquark mass (GeV)	1000 15 Leptoqua	ark mass (GeV)

Final states covered in Run-2 data: Nonres. production

- nonresonant LQ signal would interfere with Drell–Yan (DY)
- angular distributions $(|y_{\ell \ell}|, \cos \theta^*)$ are sensitive to the nonres. LQ signal at extreme dilepton masses $(m_{\ell \ell})$
- construct parametrized templates by reweighting DY simulation (NLO MadGraph) with analytic functions:

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}c_{*}} \propto \begin{bmatrix} \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}c_{*}} \end{bmatrix}_{\mathrm{DY}} + g_{\mathrm{LQ}}^{2} N_{\mathrm{int}}(m_{\ell\ell}) \begin{pmatrix} (1+c_{*})^{2} \\ 1-c_{*} + \frac{2m_{\mathrm{LQ}}^{2}}{m_{\ell\ell}^{2}} \end{pmatrix}$$

$$\stackrel{\text{interference term}}{\stackrel{(\mathrm{destructive for LQ} \to \mathrm{d}\ell)} + g_{\mathrm{LQ}}^{4} N_{\mathrm{pure}}(m_{\ell\ell}) \begin{pmatrix} (1+c_{*})^{2} \\ 1-c_{*} + \frac{2m_{\mathrm{LQ}}^{2}}{m_{\ell\ell}^{2}} \end{pmatrix}^{2}$$

$$\stackrel{\text{"pure" nonres. }\ell!}{\stackrel{(\mathrm{contribution from LQ})}{\stackrel{(\mathrm{contribution from LQ})}} \begin{pmatrix} (1+c_{*})^{2} \\ 1-c_{*} + \frac{2m_{\mathrm{LQ}}^{2}}{m_{\ell\ell}^{2}} \end{pmatrix}^{2}$$

pheno paper: arXiv:1610.03795

previous A_{FB} measurement: arXiv:2202.12327

Collins-Soper frame (COM frame):

⇒ theory parameters A_0 and A_4 for DY cross section, plus LQ-fermion coupling g_{L0}^2

- select **dielectron** or **dimuon** events with $m_{\ell\ell} > 500 \text{ GeV}$
- validate ttbar & diboson background in eµ control region
- bin signal region in reconstructed $m_{\ell\ell}$, rapidity $|y_{\ell\ell}|$, $\cos \theta^*$
- fit the DY parameters (A₀, A₄) and LQ-fermion coupling g_{LQ}^2

CMS 2503.20023

submitted to JHEP

NEW !

- set *stringent* limits on coupling & mass for 8 LQ models coupling to e
- sensitivity up to **5** TeV for large couplings (g > 1.5) !

- set stringent limits on coupling & mass for 8 LQ models coupling to e or μ
- sensitivity up to **5** TeV for large couplings (g > 1.5) !

- measurement of Z ($\rightarrow \tau_{had} \tau_{had}$) + b jet cross section at high mass
- includes interference
- set limits on coupling λ vs. m_{LQ} :

NEW

ATL 2503.19836

- measurement of Z ($\rightarrow \tau_{had} \tau_{had}$) + b jet cross section at high mass
- includes interference
- set limits on coupling λ vs. m_{LQ} :

ATL 2503.19836

LQ

see talk by C. Pollard

source

ATLAS summary of mass exclusions

CMS summary of mass limits

in Run 2, ATLAS & CMS could exclude LQs **up to 2 TeV** for $\lambda \sim 1$ with pair production

thanks to nonres. signals, we can reach **above 5 TeV** for $\lambda > 1.5$

-		CMS Preliminary	March 2025	5
ſ	Nonres. <i>ee</i> , $\mathcal{B}(LQ \rightarrow ue) = 1$, $\lambda = 1$	arXiv:2503.20023	1–4.7 TeV 1-5+ TeV	138 fb ⁻¹
e	Nonres. <i>ee</i> , $\mathcal{B}(LQ \rightarrow de) = 1$, $\lambda = 1$	arXiv:2503.20023	1-3.7 TeV 1-3.4 TeV	138 fb ⁻¹
→~	$LQ(qe)LQ(qe), B(LQ \rightarrow qe) = 1, q = u, d$	arXiv:1811.01197	0.2-1.44 TeV 0.2-1.27 TeV DODROC 000	36 fb ⁻¹
	$LO(ae)LO(ae) + LO(ae)LO(av_e), B(LO \rightarrow ae, av_e) = 0.5, a = u, d$	arXiv:1811.01197	0.2-1.47 TeV 1101 II CS. CC 0.2-1.27 TeV 0.2-1.16 TeV	36 fb ⁻¹
3 1	$el O(ae) B(l O \rightarrow ae) = 1, \lambda = 1, a = u, d$	arXiv:1509.03744	0,2-1,36 TeV 0,3-1.76 TeV	$20 \text{ fb}^{-1} (8)$
7	$ O(t_0) O(t_0) B(O \rightarrow t_0) = 1$	arXiv:1303.03730	0.2-1.34 TeV DODRES (111	127 fb ⁻¹
_	$LQ(LC)LQ(LC), D(LQ \rightarrow LC) = 1$		ΠΟΠΙΕΞ. μμ	13710
	Nonres. $\mu\mu$, $\mathcal{B}(LQ \rightarrow u\mu) = 1$, $\lambda = 1$	arXiv:2503.20023	1-5+ TeV 1-5+ TeV 1-5+ TeV	138 fb ⁻¹
l	Nonres. $\mu\mu$, $\mathcal{B}(LQ \rightarrow d\mu) = 1$, $\lambda = 1$	arXiv:2503.20023	1–4,1 TeV 1–3.8 TeV 1–3.8 TeV	138 fb ⁻¹
,	$LQ(q\mu)LQ(q\mu), B(LQ \rightarrow q\mu) = 1, q = u, d, s, c$	arXiv:1808.05082 arXiv:1509.03744	0,2-1,53 TeV 0,2-1,33 TeV 0,2-1,53 TeV	36 fb ⁻¹ 20 fb ⁻¹ (8
2	$LQ(q\mu)LQ(q\mu) + LQ(q\mu)LQ(q\nu_{\mu}), \ \mathcal{B}(LQ \rightarrow q\mu) = 0.5, \ q = u, d, s, c$	arXiv:1808.05082 arXiv:1509.03744	0.2-1.29 TeV 0.2-1.07 TeV 0.2-1.07 TeV	36 fb ⁻¹
•	$LQ(q\mu)LQ(XDM), B(LQ \rightarrow q\mu) = 0.5, \lambda \approx \frac{\sqrt{2}}{10}, m_{DM} \le 0.45 \text{ TeV}, q = s, c$	arXiv:1811.10151	0.8-1.45 TeV	77 fb ⁻¹
3	$\mu LQ(q\mu), B(LQ \rightarrow q\mu) = 1, q = u, d, \lambda = 1$	arXiv:1509.03750	0.3-0.66 TeV	20 fb ⁻¹ (8
1	$LQ(t\mu)LQ(t\mu), B(LQ \rightarrow t\mu) = 1$	arXiv:1809.05558	0.3–1.42 TeV 0.3–1.7 TeV	36 fb ⁻¹
	$LQ(b\mu)LQ(b\mu), B(LQ \rightarrow b\mu) = 1$	arXiv:2402.08668	0.3=2.05 TeV 0.3=1.81 TeV 0.3=2.12 TeV	138 fb ⁻¹
	$LO(t\mu)LO(t\mu), \beta(LO \rightarrow t\mu) = 1$	arXiv:2202.08676	0,3-2,46 TeV 0.2-1.42 TeV	137 fb ⁻¹
			0.6-2.07 TeV	
	$\tau LQ(u\tau), B(LQ \rightarrow u\tau) = 1, \lambda = 1$	arXiv:2308.06143	0.6.1.8.7.0	138 fb ⁻¹
	$\tau LQ(d\tau), \ B(LQ \rightarrow d\tau) = 1, \ \lambda = 1$	arXiv:2308.06143		138 fb ⁻¹
	$\tau LQ(s\tau), \ B(LQ \rightarrow s\tau) = 1, \ \lambda = 3$	arXiv:2308.06143	U,6-1,33 IeV	138 fb ⁻¹
	$\tau LQ(b\tau), B(LQ \rightarrow b\tau) = 1, \lambda = 3$	arXiv:2308.06143	0.6–1.08 TeV	138 fb ⁻¹
	$\tau LQ(b\tau), B(LQ \rightarrow b\tau) = 1, \lambda = 2.5$	arXiv:1806.03472	0.2–1.05 TeV	36 fb ⁻¹
	$\tau LQ(b\tau), \ B(LQ \rightarrow b\tau) = 1, \ \lambda = 2.5$	arXiv:2308.07826	0.6–1.2 TeV 0.5–1.4 TeV 0.5–1.5 TeV	138 fb ⁻¹
	$LQ(b\tau)LQ(b\tau), B(LQ \rightarrow b\tau) = 1$	arXiv:1811.00806	0,3-1,02 TeV	36 fb ⁻¹
-	$LQ(b\tau)LQ(b\tau), B(LQ \rightarrow b\tau) = 1$	arXiv:2308.07826	0,6-1,25 TeV 0,5-1,53 TeV 0,5-1,86 TeV	138 fb ⁻¹
	Nonres. $\tau\tau$, $\lambda_L(b\tau) = 2.5$, $\lambda_R(b\tau) = 0$, $\lambda_L(s\tau) = 0.48$ ($\lambda = \frac{g_U}{\sqrt{2}}$)	arXiv:2208.02717	1-2,69 TeV	138 fb ⁻¹
í	Nonres. $\tau\tau$, $\lambda_L(b\tau) = \lambda_R(b\tau) = 2.5$, $\lambda_L(s\tau) = 0.53$ ($\lambda = \frac{g_U}{\sqrt{2}}$)	arXiv:2208.02717	1-4.74 TeV	138 fb ⁻¹
L	Nonres. τv , $\lambda_L(b\tau) = 2.5$, $\lambda_R(b\tau) = 0$, $\lambda_L(s\tau) = 0.48$	arXiv:2212.12604	0.1-1.5 TeV	138 fb ⁻¹
l	Nonres. τv , $\lambda_L(b\tau) = \lambda_R(b\tau) = 2.5$, $\lambda_L(s\tau) = 0.53$	arXiv:2212.12604	0,1-1.5 TeV U ぜら. しし 0,1-2.5 TeV	138 fb ⁻¹
	$LQ(t\tau)LQ(b\nu_{\tau}) + \nu_{\tau}LQ(t\tau), \ \lambda(t\tau) = \lambda(b\nu_{\tau}) = 2.5$	arXiv:2012.04178	0,1–2.5 TeV 0,5–1,02 TeV	137 fb ⁻¹
	$LQ(b\tau)LQ(t\nu_{\tau}) + \tau LQ(t\nu_{\tau}), \lambda(t\tau) = \lambda(b\nu_{\tau}) = 2.5$	arXiv:2012.04178	0.5–1,41 TeV	137 fb ⁻¹
	$LO(t\tau)LO(t\tau), B(LO \rightarrow t\tau) = 1, \lambda = 1$	arXiv:1803.02864	0,5–1,73 TeV 0,3–0,9 TeV	36 fb ⁻¹
	$LO(t\tau)LO(t\tau), B(LO \to t\tau) = 1$	arXiv:2202.08676	0.2-1.12 TeV	137 fb ⁻¹
			0.5-1.14 TeV	
	$LQ(qv_{e(\mu)})LQ(qv_{e(\mu)}), \ \mathcal{B}(LQ \to qv_{e(\mu)}) = 1, \ q = u, d, s, c$	arXiv:1909.03460	0.5-1.55 TeV 0.5-1.98 TeV	137 fb ⁻¹
H		arXiv:1909.03460	0.5–1.55 TeV 0.5–1.93 TeV	137 fb ⁻¹
- 4	$LQ(DV_{\tau})LQ(DV_{\tau}), B(LQ \to DV_{\tau}) = 1$		0 5 1 14 7-14	
F	$LQ(bv_{\tau})LQ(bv_{\tau}), B(LQ \to bv_{\tau}) = 1$ $LQ(tv_{\tau})LQ(tv_{\tau}), B(LQ \to tv_{\tau}) = 1$	arXiv:1909.03460	0.5–1.14 TeV 0,5–1,47 TeV 0,5–1,81 TeV	137 fb ⁻¹

29

29

source

SUMMARY

Summary

- ATLAS & CMS have explored many final states in Run 2
 - scalar/vector, up/down-type models, ...
 - single, pair, and nonresonant signatures
- searches for pair production can reach ~ 2 TeV
- recent searches for nonresonant LQ signals open a large phase space at large mass and couplings λ, beyond 5 TeV
- still many opportunities for l + (c) jets final states
- the new <u>LHC BSM Working Group</u> will help to coordinate choices of benchmarks and methods between ATLAS & CMS to facilitate comparisons and combinations

Thank you for your attention !

Final states covered with Run-2 data

References

- The Leptoquark Hunter's Guide: Pair Production
 <u>https://arxiv.org/abs/1706.05033</u>
- The Leptoquark Hunter's Guide: Large Coupling (single + t-channel) <u>https://arxiv.org/abs/1810.10017</u>
- B-physics anomalies: a guide to combined explanations
 <u>https://arxiv.org/abs/1706.07808</u>
- Revisiting the vector leptoquark explanation of the B-physics anomalies <u>https://arxiv.org/abs/1903.11517</u>
- Leptoquark toolbox for precision collider studies <u>https://arxiv.org/abs/1801.07641</u>
- LQ searches at CMS (Arne Reimers, ICHEP 2024) <u>https://indi.to/xXR8H</u>
- LQ searches at ATLAS (Krisztian Peters, ICHEP 2024) <u>https://indi.to/bb249</u>

Diagrams with LaTeX source code: • TikZ.net

Feyn.net

BACK UP: PHENOMENOLOGY

The Standard Model's many symmetries...

Quantity	Quantity Symmetries		Weak	Strong
Energy	Time translation	 ✓ 	 ✓ 	~
Linear momentum	Spatial translation	 ✓ 	 ✓ 	~
Angular momentum	Rotations	 ✓ 	 ✓ 	 ✓
Center-of-mass	Lorentz boosts	 ✓ 	 ✓ 	~
EM charge, color	Gauge transformation	 ✓ 	v	~
Lepto	n number L	 ✓ 	 	v
B - L Baryo	n number B	 Image: A set of the set of the	 ✓ 	 ✓
Lep	ton flavor	 ✓ 	 ✓ 	~
Qua	ark flavor	 Image: A set of the set of the	X	~
lsos	pin (uds)	×	×	~
Chiral	ty (LH, RH)	×	×	 ✓
F	arity P	 ✓ 	×	~
Charge	conjugation C	 ✓ 	×	~
Time	reversal T	 ✓ 	×	~
	СР	 V 	×	~
	СРТ	V	~	V

fundamental to relativistic gauge field theories

respected by SM gauge interactions but not fundamental ! ⇒ "accidental" symmetry ?

<u>caveats</u>:

*

*

- flavor symmetries are broken by mass differences (Higgs-fermion couplings in Yukawa sector)
- other symmetries are broken
- explicitly by nonzero (quark) masses
- anomalously by quantum effects or regularization
- spontaneously by the Higgs or QCD vacuum

Leptoquark models

- scalar or vector boson
- couples to fermions $(\lambda_{\ell q})$

 \Rightarrow carries L, B, color, EM charge

Leptoquark models

Table 3.1: Summary of all possible LQ fields with their representation under $SU(3)_C \times SU(2)_L$, along with hypercharge Y, fermion number F = 3B + L, charge $Q = T_3 + Y/2$, and the fermion current(s) they couple to (hermitian conjugate omitted). Bold numbers indicate the dimension of the representation under the respective gauge group. Charge conjugation is indicated by $\psi^C = C\overline{\psi}^T$ with $C = i\gamma^2\gamma^0$. Adapted from Refs. [112] and [181].

LQ field	${ m SU}(3)_{ m C}$	$SU(2)_L$	Y/2	F = 3B + L	$Q = T_3 + Y/2$	Fermion current
Scalar						
\overline{S}_1	$\overline{3}$	1	-2/3	-2	$\mp \frac{2}{3}$	$\overline{u}_{ m R}^C u_{ m R}, \overline{d}_{ m R}^C d_{ m R}$
S_1	$\overline{3}$	1	1/3	-2	$\pm \frac{1}{3}$	$\overline{Q}_{\mathrm{L}}^{C} \varepsilon L_{\mathrm{L}}, \overline{u}_{\mathrm{R}}^{C} e_{\mathrm{R}}, \overline{d}_{\mathrm{R}}^{C} \nu_{\mathrm{R}}, \overline{Q}_{\mathrm{L}}^{C} \varepsilon Q_{\mathrm{L}}, \overline{u}_{\mathrm{R}}^{C} d_{\mathrm{R}}$
\widetilde{S}_1	$\overline{3}$	1	4/3	-2	$\pm \frac{4}{3}$	$\overline{d}_{ m R}^{C}e_{ m R},\overline{u}_{ m R}^{C}u_{ m R}$
\widetilde{R}_2	3	2	1/6	0	$\mp \frac{1}{3}, \pm \frac{2}{3}$	$\overline{d}_{ m R}arepsilon L_{ m L},\overline{Q}_{ m L} u_{ m R}$
R_2	3	2	7/6	0	$\pm \frac{2}{3}, \pm \frac{5}{3}$	$\overline{u}_{ m R}arepsilon L_{ m L},\overline{e}_{ m R}Q_{ m L}$
S_3^i	$\overline{3}$	3	1/3	-2	$\pm \frac{1}{3}, \mp \frac{2}{3}, \pm \frac{4}{3}$	$\overline{Q}_{ m L}^Carepsilon T_i L_{ m L}, \overline{Q}_{ m L}^Carepsilon T_i Q_{ m L}$
Vector						
$\overline{U}_{1\mu}$	3	1	-1/3	0	$\mp \frac{1}{3}$	$\overline{d}_{ m R}\gamma^{\mu} u_{ m R}$
$U_{1\mu}$	3	1	2/3	0	$\pm \frac{2}{3}$	$\overline{Q}_{\mathrm{L}}\gamma^{\mu}L_{\mathrm{L}},\overline{d}_{\mathrm{R}}\gamma^{\mu}e_{\mathrm{R}},\overline{u}_{\mathrm{R}}\gamma^{\mu}\nu_{\mathrm{R}}$
$\widetilde{U}_{1\mu}$	3	1	5/3	0	$\pm \frac{5}{3}$	$\overline{u}_{ m R}\gamma^{\mu}e_{ m R}$
$\widetilde{V}_{2\mu}$	$\overline{3}$	2	-1/6	-2	$\pm \frac{1}{3}, \mp \frac{2}{3}$	$\overline{u}_{\mathrm{R}}^{C}\gamma^{\mu}L_{\mathrm{L}},\overline{Q}_{\mathrm{L}}^{C}\gamma^{\mu} u_{\mathrm{R}},\overline{d}_{\mathrm{R}}^{C}\gamma^{\mu}Q_{\mathrm{L}}$
$V_{2\mu}$	$\overline{3}$	2	5/6	-2	$\pm \frac{1}{3}, \pm \frac{4}{3}$	$\overline{d}_{ m R}^C \gamma^\mu arepsilon L_{ m L}, \overline{Q}_{ m L}^C arepsilon \gamma^\mu e_{ m R}, \overline{Q}_{ m L}^C \gamma^\mu u_{ m R}$
$U^i_{3\mu}$	3	3	2/3	0	$\mp \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{5}{3}$	$\overline{Q}_{ m L}\gamma^{\mu}T_{i}L_{ m L}$

38

LQ decay signatures at the LHC

analyses often use a **parameter** β :

 $\mathcal{B}(\mathrm{LQ} \to q\ell) = \beta$ $\mathcal{B}(\mathrm{LQ} \to q'\nu) = 1 - \beta$

typical benchmarks $\beta = 0, 0.5, 1$

e.g. purely "third-generation" LQ \rightarrow b7, tv:

 $\mathcal{B}(LQ_3 \to b\tau) = \beta$ $\mathcal{B}(LQ_3 \to t\nu_{\tau}) = 1 - \beta$

BACK UP: PAIR PRODUCTION

- set upper limits on $\sigma(LQ LQ \rightarrow c\nu_{\tau}c\nu_{\tau})$
- set upper limits on $B(LQ \rightarrow c\nu_{e/\mu})$
- masses up to 900 (1150) GeV are excluded for a scalar (vector) LQ

ATLAS 2410.17824

Submitted to JHEP

NEW!

ATLAS combination of pair production

- combine 9 independent searches for pair production
- orthogonality from lepton requirements with negligible overlap
- improved mass exclusion thanks to complementarity

ATLAS 2401.11928

also see review paper: ATLAS 2403.09292

BACK UP: NONRES. PRODUCTION

7 Template construction

To model the dilepton differential distributions, parameter-independent templates are constructed for each piece of the differential cross section of LQ production shown in Eqs. (4) and (5). For the SM DY component, the differential cross section is reparametrized as follows:

$$\left[\frac{d\sigma}{dc_*}(m_{\ell\ell}^2)\right]_{\rm DY} \propto \frac{3}{4(2+\alpha)} \left\{ (1+c_*^2) + \frac{(2+\alpha)}{2} A_4 c_* + \alpha (1-c_*^2) \right\},\tag{6}$$

where $\alpha = \frac{2A_0}{2-A_0}$. The first two terms are symmetric and antisymmetric in c_* , respectively, and the third term is proportional to α . The LQ exchange comprises two terms with coefficients y_{LQ}^4 or g_{LQ}^4 for the pure exchange of the LQ and, y_{LQ}^2 or g_{LQ}^2 for the interference with Z/γ^* . The templates for these five pieces of the cross section are denoted as f_s (symmetric), f_a (antisymmetric), and f_{α} (corresponding to the third term) for the three DY templates and $f_{LQ(pure)}$ and $f_{LQ(int)}$ for the pure and interference LQ terms, respectively.

In Ref. [35], the f_s , f_a , and f_α templates are constructed by binning events in c_R and reconstructed |y|. These templates are constructed for various mass regions, and the fit is performed for each mass region separately. In this paper, the two-dimensional templates are extended to three dimensions by additionally binning in the reconstructed $m_{\ell\ell}$. The templates are constructed by reweighting simulated DY events as analytical functions of generator-level quantities to match the differential distributions of the three pieces of the DY cross section. To reduce statistical fluctuations in the simulator, each event is used twice, once with $+c_*$ and once with $-c_*$, with a weight of 0.5 to keep the normalization unchanged. The reweighting functions for the DY templates, f_s , f_a , and f_α respectively, are:

$$w_{s}(|c_{*}|) = \frac{1+c_{*}^{2}}{1+c_{*}^{2}+\alpha(1-c_{*}^{2})}; \text{ and}$$

$$w_{a}(c_{*}) = \frac{c_{*}}{1+c_{*}^{2}+\alpha(1-c_{*}^{2})};$$

$$w_{a}(|c_{*}|) = \frac{1-c_{*}^{2}}{1+c_{*}^{2}+\alpha(1-c_{*}^{2})}.$$
(9)

The denominator of the DY reweighting functions is determined for each event from distributions of simulated SM DY events that are binned in $\cos \theta^*$ and generator-level |y|. The α values in the denominator are determined by fitting the generator-level distributions of the simulated events. Finally, to avoid negative values in the antisymmetric template, f_a , a linear combination of f_s and f_a is used in the fit, defined by $f_+ = \frac{f_s \pm f_a}{2}$.

For the templates corresponding to the two LQ terms, $f_{LQ(pure)}$ and $f_{LQ(int)}$, events are reweighted as functions of both c_* and $m_{\ell\ell}$. The reweighting functions are given by:

$$w_{\mathrm{LQ(pure)}}^{S,V}(c_*, m_{\ell\ell}) = \left(N_{\mathrm{pure}}^{S,V}(m_{\ell\ell}) \frac{(1 \mp c_*)^2}{\left(1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}\right)^2} \right) \frac{1}{N_{\mathrm{SM}}(m_{\ell\ell})(1 + c_*^2)}; \quad (10)$$
$$w_{\mathrm{LQ(int)}}^{S,V}(c_*, m_{\ell\ell}) = \left(N_{\mathrm{int}}^{S,V}(m_{\ell\ell}) \frac{(1 \mp c_*)^2}{\left(1 - c_* + \frac{2m_{\mathrm{LQ}}^2}{m_{\ell\ell}^2}\right)} \right) \frac{1}{N_{\mathrm{SM}}(m_{\ell\ell})(1 + c_*^2)}, \quad (11)$$

where *S* and *V* denote the scalar or vector case. The prefactors, $N_{\text{pure/int}}^{S,V}(m_{\ell\ell})$, depend on the vector and axial-vector couplings of the quarks and leptons to the Z boson, as well as the quark charges. Thus, templates for an LQ coupling to a lepton and quark of specific flavors have different shapes compared to an LQ coupling to a different lepton and quark. The $N_{\text{SM}}(m_{\ell\ell})$ prefactor represents the coefficient of the symmetric term $(1 + c_*^2)$ in the SM DY angular distribution. The denominators of the LQ reweighting functions are different from those of the SM DY functions, calculated from the analytical form of the LO SM DY cross section for each event. This is because the LQ modifies the $m_{\ell\ell}$ distribution, which must be taken into account in the reweighting.

The reweighting procedure described above has several benefits. The effects of misassigning the direction of the incident quark in the c_* computation, called the "dilution" effect, are accounted for correctly. Additionally, no dedicated MC samples need to be produced for the LQ process or its interference. The distribution of LQ events can be obtained by reweighting SM DY MC events using the analytical functional form of the LQ differential cross section.

The reweighting procedure was further validated by fitting LQ and DY templates at the generator level to simulated LQ signals using MADGRAPH5_aMC@NLO using the SLQRULES package [69]. Signals were generated at various mass points from 1–5 TeV. The fitted results agreed with the expected coupling values up to a maximum of 30% at $m_{LQ} = 1$ TeV, decreasing with m_{LQ} . The discrepancy is attributable in part to the fact that the reweighting procedure does not account for NLO effects in the LQ exchange. We account for this in our fits by applying a 30% systematic uncertainty in the normalization of the LQ templates.

The total template for the scalar LQ case, binned in reconstructed $m_{\ell\ell}$, *y*, and $c_{\rm R}$, is given by:

$$f_{\text{data}} = \sum_{j} f_{\text{bkg}}^{j} + N(\alpha) \left(\alpha \ f_{\alpha} + \left(1 + \frac{3A_{4}}{8N} \right) f_{+} + \left(1 - \frac{3A_{4}}{8N} \right) f_{-} \right)$$

+ $y_{\text{LQ}}^{4} f_{\text{LQ(pure)}} + y_{\text{LQ}}^{2} f_{\text{LQ(int)}},$ (12)

where f_{bkg}^{j} are templates for the non-DY backgrounds and $N(\alpha) = \frac{3}{4(2+\alpha)}$. The same template is used for the vector LQ case using the corresponding reweighting functions, and replacing y_{LQ} with g_{LQ} . The coefficients A_4 , α , and either y_{LQ}^2 or g_{LQ}^2 are extracted in the fits to data.

Events are divided into bins based on $m_{\ell\ell}$, |y|, and c_R . For $m_{\ell\ell}$, three bins are used with bin edges at 500, 700, and 1000 GeV, with the fourth bin containing all events with $m_{\ell\ell} > 1000$ GeV. Three bins are defined for |y|, with edges at 0, 0.6, 1, and 2.4. The binning in c_R depends on the rapidity. Within the first rapidity bin, events are divided into eight bins in c_R of width 0.25. For the other two rapidity bins, events are divided into six bins in c_R , with edges of -1, -0.5, -0.25, 0, 0.25, 0.5, and 1. Bin edges were chosen after ensuring that there were sufficient simulated events in each bin, and fit uncertainties were minimized without losing precision.

Additional templates are created for the other background processes, with one template each for the MisID background, photon-induced dilepton production, DY $\tau\tau$ production, the combined top quark backgrounds (t \bar{t} , tW), and the combined diboson backgrounds (WW, ZZ, WZ). The top quark and MisID templates are symmetrized in c_R to reduce statistical fluctuations. The diboson, photon-induced dilepton, and DY $\tau\tau$ backgrounds are not symmetrized because of their significant inherent asymmetry.

analysis methods based on previous A_{FB} measurement arXiv:2202.12327

Table 1: Properties of the R_2 , \tilde{R}_2 , and U_3 LQs from Ref. [18]. This paper describes a search for R_2 LQs with RL couplings and charge 5/3, \tilde{R}_2 LQs with RL couplings and charge 2/3, and U_3 LQs with charges 2/3 and 5/3.

LQ family	(SU(3), SU(2), U(1))	Spin	Charge
<i>R</i> ₂	(3, 2, 7/6)	0	5/3,2/3
\widetilde{R}_2	(3, 2, 1/6)	0	2/3,-1/3
U_3	(3, 3, 2/3)	1	5/3, 2/3, -1/3

The LQ-quark-lepton interactions are defined by the following terms in the Lagrangian:

$$\mathcal{L} \supset y_{\ell u} \overline{u}_R \ell_L R^{5/3} + y_{\ell d} \overline{d}_R \ell_L \widetilde{R}^{2/3} + g_{\ell u} \overline{u}_L \gamma^{\mu} \ell_L U_{\mu}^{5/3} + g_{\ell d} \overline{d}_L \gamma^{\mu} \ell_L U_{\mu}^{2/3} + \text{h.c.}, \tag{1}$$

where $y_{\ell u}$ ($y_{\ell d}$) are the couplings of the charge 5/3 (2/3) R_2 (\tilde{R}_2) scalar LQs to fermions and $g_{\ell u}$ ($g_{\ell d}$) are the couplings of the charge 5/3 (2/3) vector U_3 LQs to fermions. The terms describing

In general, for equal coupling values, the cross sections for vector LQ production are larger than for scalar LQ production, hence the limits on $|g_{LQ}|$ are generally stronger than those on $|y_{LQ}|$. The limits on up-type couplings are stronger than the limits on down-type couplings because of the larger up quark content of the proton. In the V_{ed} and V_{µd} cases, the interference process is negative, and the likelihood functions for these models are thus quite asymmetric and nonquadratic. This leads to smaller cross sections and weaker expected and observed limits than the other cases. The uncertainties in the expected limits are also accordingly larger than in the other cases. Further, the observed limit on $|g_{ed}|$ is more stringent than the expected limit, despite the positive best fit value for the V_{ed} mass of 2.5 TeV, as shown in Table 4. This stems from the asymmetric nuisance impacts arising from the nonquadraticity in the likelihood, as discussed in Section 8.

Table 3: Best fit values of A_0 , A_4 , and y_{LQ}^2 for scalar LQ models. The Feldman–Cousins confidence interval for y_{LQ}^2 is shown at 68% CL. Results are shown for a candidate m_{LQ} of 2.5 TeV.

Model	A_0	A_4	y_{LQ}^2	Lower bound on y_{LQ}^2	Upper bound on y_{LQ}^2
S _{µu}	0.02 ± 0.06	1.59 ± 0.07	$-0.13^{+0.14}_{-0.15}$ (stat) $^{+0.06}_{-0.11}$ (syst)	0	0.082
$S_{\mu d}$	0.02 ± 0.06	1.60 ± 0.07	$-0.11^{+0.18}_{-0.20} \text{ (stat)}^{+0.09}_{-0.13} \text{ (syst)}$	0	0.119
S _{eu}	0.07 ± 0.07	1.61 ± 0.08	$-0.10^{+0.15}_{-0.17} ext{ (stat)}^{+0.07}_{-0.11} ext{ (syst)}$	0	0.093
S _{ed}	0.07 ± 0.07	1.62 ± 0.08	$-0.09^{+0.20}_{-0.23} \text{ (stat)}^{+0.11}_{-0.13} \text{ (syst)}$	0	0.138

Table 4: Best fit values of A_0 , A_4 , and g_{LQ}^2 for vector LQ models. The Feldman–Cousins confidence interval for g_{LQ}^2 is shown at 68% CL. Results are shown for a candidate m_{LQ} of 2.5 TeV.

Model	A_0	A_4	g^2_{LQ}	Lower bound on g_{LQ}^2	Upper bound on g_{LQ}^2
$V_{\mu u}$	0.01 ± 0.05	1.63 ± 0.06	$-0.10^{+0.02}_{-0.02} ext{ (stat)}^{+0.04}_{-0.08} ext{ (syst)}$	0	0.029
$V_{\mu d}$	0.01 ± 0.05	1.61 ± 0.06	$0.14^{+0.05}_{-0.05} ext{ (stat)}^{+0.14}_{-0.07} ext{ (syst)}$	0.036	0.328
V _{eu}	0.05 ± 0.07	1.66 ± 0.08	$-0.09^{+0.03}_{-0.03} ext{ (stat)}^{+0.04}_{-0.08} ext{ (syst)}$	0	0.026
V _{ed}	0.06 ± 0.07	1.64 ± 0.08	$0.13^{+0.06}_{-0.06} \text{ (stat)}^{+0.17}_{-0.09} \text{ (syst)}$	0.038	0.352

Nonresonant $\tau\tau$: jet selections

47

Comparison EXO-19-016 & HIG-21-001

	EXO-19-019, <u>arXiv:2308.07826</u>	HIG-21-001, arXiv:2208.02717
jet categories	"0j": veto jets <i>p</i> _T > 50 GeV "≥1j" with <i>p</i> _T > 50 GeV, <i>m</i> _{vis} > 100 GeV • "0b" = "0b≥1j" • "≥1b"	"No b tag" (no jet requirement) "B tag" with $p_T > 20$ GeV
observables	χ , $S_{\rm T}^{\rm MET}$	$m_{ m T}^{ m tot}$
Drell-Yan estimation	MC + Z $p_{\rm T}$ corrections from $\mu\mu$	Data-driven with "embedded" samples (from $\mu\mu$ events)
$j \rightarrow au_{h}$ estimation	Data-driven, "fake-factor" method	Data-driven, "fake-factor" method

$$\lambda_{\ell q} = \lambda \cdot rac{\mathrm{d/u'}}{\mathrm{b/t'}} \left(egin{array}{ccc} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

"best-fit" to B anomalies

LQ

arXiv:2103.16558

$$\lambda_{\ell q} = rac{g_U}{\sqrt{2}} \cdot egin{array}{c} {
m d}/{
m u}' \ {
m b}/{
m t}' \end{array} egin{pmatrix} {
m e}/
u_{
m e} & \mu/
u_{\mu} & au/
u_{ au} \ au/
u_{ au} & au/
u_{ au} \ 0 & 0 & 0 \ 0 & +0.01 & 0.19 \ 0 & -0.14 & 1 \ \end{pmatrix}$$

HIG-21-001: nonresonant $\tau\tau$ via vector LQ

HIG-21-001 arXiv:2208.02717

 $\lambda = \frac{g_U}{\sqrt{2}}$

138 fb⁻¹ (13 TeV)

95% CL excluded:

Observed 68% expected

---- Expected 95% expected

95% CL preferred region

4

6000

8000

10000

m_u (TeV)

137 fb⁻¹ (13 TeV)

- measurement of Z ($\rightarrow \tau_{had} \tau_{had}$) + b jet cross section at high mass
- includes interference
- set limits on coupling λ vs. m_{LQ} :

ATL 2503.19836

LQ

see talk by C. Pollard

- measurement of Z ($\rightarrow \tau_{had} \tau_{had}$) + b jet cross section at high mass
- includes interference
- set limits on coupling λ vs. m_{LQ} :

ATL 2503.19836

LQ

see talk by C. Pollard

- measurement of Z ($\rightarrow \tau_{had} \tau_{had}$) + b jet cross section at high mass
- includes interference
- set limits on coupling λ vs. m_{LQ} :

ATL 2503.19836

LQ

see talk by C. Pollard

- measurement of Z ($\rightarrow \tau_{had} \tau_{had}$) + b jet cross section at high mass
- includes interference
- set limits on coupling λ vs. m_{LQ} :

ATL 2503.19836

LQ

see talk by C. Pollard

Nonresonant $\tau\tau$: interference with SM Drell–Yan

CMS-EXO-21-009

Nonres. LQ interpretation of EXO-21-009

- target τ + MET events
- fit $m_{\rm T}$ to target W' $\rightarrow \tau \nu$ & other signals
- easily reinterpretated with nonresonant τv via LQ in *t* channel
- ~1σ across LQ mass, consistent with EXO-19-016 limit assuming LH couplings only
- first test of $b\to c\tau\nu$ at TeV scale

