/ / / / · · searches for lepton flavor / / / / / * * violation and SUSY / / / / / / tests of lepton <u>Chris Pollard</u>, Warwick o.b.o. ATLAS and CMS * * * * * **N** ---

 $d\sigma / dm$

we're all looking forward to many plots like this

M

many nice results
in the last year
from the LHC on
these topics!

there is just too
 much to cover:
 there will be a
 clear bias toward
the newest results.

be sure to check
out the public
results websites:

<u>ATLAS link</u> <u>CMS link</u>

slide number

supersymmetry

<u>CMS new physics in jet scaling patterns</u>

search for relatively generic new physics in multi-lepton + multi-jet events:

<u>CMS new physics in jet scaling patterns</u>

interpreted in SUSY scenarios \rightarrow first dedicated constraints of SUSY production in the 3ℓ +jets final state.

0ar,

<u>ATLAS search sleptons/sneutrino cascades</u>

search targets $\tilde{\ell}, \tilde{B}, \tilde{H}^0$, which e.g. can contribute to μ anomalous magnetic moment

brand

lepton flavor universality + violation

the LHC has a history of strong tests of LFU

for the new measurement of $B(W \rightarrow \tau \nu) / B(W \rightarrow e \nu)$ in tt events:

see Federica's talk

<u>Eur. Phys. J. C 84 (2024) 993</u>

ATLAS measurement of high m_T production

comprehensive unfolded measurement split by lepton $|\eta|$, flavor, and charge

ATLAS measurement of high m_T production

no sign of e/μ non-universality \rightarrow new limits set on effective coupling coefficients \rightarrow many unfolded differential distributions for interpretation

<u>CMS search for LFV in Z and Z' decays</u>

 $B(Z \rightarrow \ell \tau)$ ruled out at the 10⁻⁶ level

<u>CMS search for $Z' \rightarrow \tau \tau$ </u>

probes the high-mass $\tau\tau$ spectrum for resonances: none in sight. :(

indications of non-SM $b \leftrightarrow \tau$ couplings?

3rd generation fermions

no sign of excess reported by CMS encroaching on phase space preferred by R_D/R_{D^*} anomalies.

constraints on new high-scale $\tau \leftrightarrow \gamma$ interactions: tighter than existing a_{τ} measurements.

$$O_{\tau\gamma} = (\bar{l}\sigma^{\mu\nu}\tau)\sigma^{i}H(-s_{W}\sigma^{i}W^{i}_{\mu\nu} + c_{W}B_{\mu\nu})$$

$\delta a_{\tau} =$	$\frac{2\sqrt{2}m_{\tau}v}{e}$	$\frac{P_{\gamma} \operatorname{Re}[c_{\tau\gamma}]}{\Lambda^2}$		$c_{\tau\gamma} = 0$ Central valu 95% CL inte	ie er
n ents	C PRL 131	MS PbPb γγ → ττ . (2023), 151803			
recisic easurem	ATL PRL 131	_AS PbPb γγ → ττ . (2023), 151802			
a _τ me	RPPhys 87	CMS <i>pp γγ → ττ</i> 7 (2024), 107801			
		ATLAS <i>pp → ττ</i> (this result)			
		-		40 -30	

interpreted as constraints on dim-6 EFT coefficients

20

interpreted as constraints on dim-6 EFT coefficients

unfolded cross-sections + SM backgrounds made available
 for your further interpretation!

thanks for your attention!

more related results in other presentations:
 Izaak Neutelings (leptoquarks)
 Alessandro Ruggiero (SUSY)
 Federica Fabbri (top)
 several in the flavor sessions

other new(-ish) highlights to be aware of: ATLAS SUSY in VBF topologies <u>SUSY-2023-26</u> ATLAS search for $cc + E_T^{miss}$ <u>SUSY-2018-25</u> DM interpretation of $tc + E_T^{miss}$ <u>link</u>

Backup

ATLAS search for SUSY in VBF topologies

VBF topologies particularly sensitive to *R*-conserving SUSY scenarios with a bino-like LSP ($\tilde{\chi}_1^0$) and a compressed mass hierarchy.

<u>ATLAS search for $cc + E_T^{miss}$ </u>

new dedicated flavor-tagging strategy implemented to identify charm jets

> leads to limits on \tilde{t} and \tilde{c} production as well as $LQ \rightarrow c\nu$ decays (see Izaak's talk this afternoon)

<u>CMS observation of $pp\gamma\gamma \rightarrow pp\tau\tau$ </u>

CMS has observed the process $\gamma\gamma \rightarrow \tau\tau$ in *pp* collisions for the first time, which allows extraction of the anomalous EM moments of the τ -lepton with high precision

assuming no low-scale new physics, can constrain high-scale contributions to a_{τ}

Coupling coefficient		
$c_{lq}^{(3)}$		
$c_{lq}^{(\tilde{1})}$		
C _{lu}		
C _{ld}		
$c_{q au}$		
C _{τu}		
$c_{\tau d}$		
c _{ll}		
$c_{Hl}^{(3)}$		
$c_{Hl}^{(1)}$		
$c_{H au}$		
$c_{\tau W}$		
$C_{\tau B}$		
$c_{\tau Z}$		
$c_{\tau\gamma}$		

Operator
$(\bar{l}\sigma^i\gamma^\mu l)(\bar{q}\sigma^i\gamma^\mu q)$
$(ar{l}\gamma^\mu l)(ar{q}\gamma^\mu q)$
$(\bar{l}\gamma^{\mu}l)(\bar{u}\gamma^{\mu}u)$
$(ar{l}\gamma^\mu l)(ar{d}\gamma^\mu d)$
$(ar{ au}\gamma^\mu au)(ar{q}\gamma^\mu q)$
$(ar{ au}\gamma^\mu au)(ar{u}\gamma^\mu u)$
$(ar{ au}\gamma^\mu au)(ar{d}\gamma^\mu d)$
$(ar{l}\gamma^\mu l)(ar{l}\gamma^\mu l)$
$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{l}\sigma^{i}\gamma^{\mu}l)$
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l)$
$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{\tau}\gamma^{\mu}\tau)$
$(\bar{l}\sigma^{\mu u} au)\sigma^{i}HW^{i}_{\mu u}$
$(\bar{l}\sigma^{\mu u} au)HB_{\mu u}$
$(\bar{l}\sigma^{\mu\nu}\tau)\sigma^{i}H(c_{W}\sigma^{i}W^{i}_{\mu\nu}+s_{W}B_{\mu\nu})$
$(\bar{l}\sigma^{\mu\nu}\tau)\sigma^{i}H(-s_{W}\sigma^{i}W^{i}_{\mu\nu}+c_{W}B_{\mu\nu})$

m_{U¹}™ [GeV]

