Christoph Englert

t-b Synergies for BSM

"precision flavour vs. high energy coverage"

Rencontres de Moriond

26/03/25

LEVERHULME TRUST_____

Science and Technology Facilities Council

BSM?

- plethora of *serious* theoretical problems: tuning, CP, ...
- somehow SM correlations at high energies (too!) accurate

- plethora of *serious* theoretical problems: tuning, CP, ...
- somehow SM correlations at high energies (too!) accurate

clues in data?

- integrated approach across energy scales
- tension anomalies
- tension motivated approaches
- close loopholes

ATLAS Pr $\sqrt{s} = 13$ TeV, 3	relimir 6.1 - 139	nary ∋fb⁻¹		Tota Stat.		
$m_H = 125.09 \text{ G}$ p = 79%	ieV			Syst. SM	1	
' SM				Total	Stat.	Sys
ggF γγ	I	ė	1.02	+ 0.11 - 0.11	($^{+0.08}_{-0.08}$,	+ 0.07 - 0.07
ggF ZZ	(0.95	+ 0.11 - 0.11	($^{+0.10}_{-0.10}$,	+ 0.04 - 0.03
ggF WW		9	1.13	+ 0.13 - 0.12	($^{+\ 0.06}_{-\ 0.06}$,	+ 0.12 - 0.10
ggF ττ	H	\$	0.87	+ 0.28 - 0.25	$(\begin{array}{c} + \ 0.15 \\ - \ 0.15 \end{array} ,$	+ 0.23 - 0.20
ggF+ttH μμ		-	0.52	+ 0.91 - 0.88	$(^{+ 0.77}_{- 0.79}$,	+ 0.49 - 0.38
VBF γγ		l 🖷	1.47	+ 0.27 - 0.24	(^{+0.21} _{-0.20} ,	+ 0.17 - 0.14
VBF ZZ	(1.31	+ 0.51 - 0.42	$(^{+ 0.50}_{- 0.42}$,	+ 0.1 - 0.06
VBF WW		e	1.09	+ 0.19 - 0.17	$(^{+ 0.15}_{- 0.14} ,$	+ 0.1 - 0.1
VBF ττ	Ę		0.99	+ 0.20 - 0.18	$(^{+ 0.14}_{- 0.14}$,	+ 0.1 - 0.1
VBF+ggF bb	H	• ••	0.98	+ 0.38 - 0.36	$\left(\begin{array}{c} + \ 0.31 \\ - \ 0.33 \end{array} \right),$	+ 0.2 - 0.1
VBF+VH μμ		—	2.33	+ 1.34 - 1.26	$(\begin{array}{c} +1.32\\ -1.24 \end{array} ,$	+ 0.2 - 0.2
VH γγ			1.33	+ 0.33 - 0.31	(^{+0.32} _{-0.30} ,	+ 0.1
VH ZZ			1.51	+ 1.17 - 0.94	$(^{+1.14}_{-0.93}$,	+ 0.2 - 0.1
VH ττ	H-E		0.98	+ 0.59 - 0.57	$\left(\begin{array}{c} + \ 0.49 \\ - \ 0.49 \end{array} \right),$	+ 0.3 - 0.2
WH bb	H		1.04	+ 0.28 - 0.26	$(\begin{array}{c} + \ 0.19 \\ - \ 0.19 \end{array} ,$	+ 0.2 - 0.1
ZH bb	ų.	₽	1.00	+ 0.24 - 0.22	$(\begin{array}{c} + 0.17 \\ - 0.17 \end{array} ,$	+ 0.1 - 0.1
ttH+tH γγ	H	÷	0.93	+ 0.27 - 0.25	(^{+0.26} _{-0.24} ,	+ 0.0
ttH+tH WW		┝━━・	1.64	+ 0.65 - 0.61	$\left(\begin{array}{c} + \ 0.44 \\ - \ 0.43 \end{array} \right),$	+ 0.4 - 0.4
ttH+tH ZZ			-1 .69	+ 1.69 - 1.10	$(^{+1.65}_{-1.09}$,	+ 0.3 - 0.1
ttH+tH ττ	H	 _	1.39	+ 0.86 - 0.76	($^{+0.66}_{-0.62}$,	+ 0.5 - 0.4
ttH+tH bb			0.35	+ 0.34 - 0.33	($^{+0.20}_{-0.20}$,	+ 0.2 - 0.2
 12	0	2	<u> </u>	6		8
	~	<u> </u>	,	Ŭ		

BSM?

experimental precision

Strong interaction top flavour

Strong interaction top flavour

strongly-interacting top flavour

strongly-interacting top flavour

- existing direct top partner constraints in the range of ≥ 1.5 TeV compatible [Matsedonskyi, Panico, Wulzer `15] [Li et al. `19]
- theoretical uncertainties are main sensitivity limitations, adding additional channels does not change this picture dramatically

the future of strongly-interacting top flavour

bottom-up approach: EFT

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-2})$, Marginalised

EFT approach

- ...well underway
- many parameters...
- flavour-agnostic results:
 0.1-1/TeV² sensitivity

 improvements towards HL-LHC possible via data

[Celada et al. `24]

- ...well underway
- many parameters...
- flavour-agnostic results:
 0.1-1/TeV² sensitivity

EFT approach

- improvements towards HL-LHC possible via data
- but also through optimised new physics classifiers

top pair production + semi-leptonic decays

fractional improvement over collider observables

[CM	[S`16] 2.3 ft	3 ab^{-1}		
	Individual	Profiled	Individual	Profiled
\bar{C}_G	0.07%	14.12%	0.07%	11.09%
$ar{C}^{(3)33}_{arphi q}$	33.74%	34.19%	33.73%	33.48%
$ar{C}^{33}_{uG}$	28.29%	32.18%	28.28%	30.74%
\bar{C}^{33}_{uW}	34.86%	35.35%	34.85%	35.53%
$ar{C}_{qd}^{(8)33ii}$	4.71%	4.68%	4.71%	4.76%
$\bar{C}_{qq}^{(1)i33i}$	3.50%	3.45%	3.50%	4.73%
$\bar{C}_{qq}^{(3)i33i}$	4.35%	4.28%	4.35%	5.00%
$\bar{C}_{qq}^{(3)ii33}$	63.83%	—	63.83%	71.91%
$\bar{C}_{qu}^{(8)33ii}$	3.45%	3.51%	3.45%	3.48%
$\bar{C}_{qu}^{(8)ii33}$	3.74%	3.72%	3.74%	3.77%
$\bar{C}_{ud}^{(8)33ii}$	4.62%	4.46%	4.62%	4.79%
\bar{C}_{uu}^{i33i}	3.38%	3.35%	3.38%	1.95%
$\bar{C}_{lq}^{(3)ii33}$	_	_	10.57%	35.52%

EFT approach

- ...well underway
- many parameters...
- flavour-agnostic results:
 0.1-1/TeV² sensitivity
- improvements towards
 HL-LHC possible via
 data
- but also through optimised new physics classifiers

[Brown et al. `21]

bottom-up approach: EFT

bottom-up approaches top vs bottom

- LHC measurements largely quark flavour-blind (with exceptions)
- top sector motivated to establish RGE-informed B/K analyses
- differential analyses to enhance tensions underway...

	Channel	Experiment	SM	Pul
R_K	$\bar{B}^0 \to D^+ K^-$	$0.058\substack{+0.004\\-0.004}$	$0.082^{+0.002}_{-0.001}$	$\approx 5.6 \sigma$
$R_{s\pi}$	$\bar{B}_s \to D_s^+ \pi^-$	0.71 ± 0.06	$1.06\substack{+0.04\\-0.03}$	$\approx 5 \sigma$
R_{K^*}	$\bar{B}^0 \to D^+ K^{*-}$	0.136 ± 0.023	$0.14^{+0.01}_{-0.01}$	$pprox 0.16 \sigma$
R_K^*	$\bar{B}^0 \to D^{*+} K^-$	0.064 ± 0.003	$0.076^{+0.002}_{-0.001}$	$\approx 3.6 \sigma$
$R^*_{s\pi}$	$\bar{B}_s \to D^{*+} \pi^-$	$0.52\substack{+0.18\\-0.16}$	$1.05\substack{+0.04\\-0.03}$	$\approx 3.1 \sigma$

jets [Bordone, Greljo, Marzocca `21] Drell Yan [Grunwald, Hiller, Kröniger, Nollen `24, `25]

loopholes?

right-handed down sector...

 $O_{dd} = (\bar{d}_R^i \gamma^\mu d_R^j) (\bar{d}_R^k \gamma_\mu d_R^l).$

loopholes?

right-handed down sector...

• is this relevant in the UV model landscape? YES!

[Giudice, Gripaios, Sundrum `11] ... [CE, Mayer, Naskar, Renner `24]

State	Spin	SM charges	Tree-level generated operators
$\Phi_{(3)}$	0	$({f 3},{f 1})_{2/3}$	O_{dd} [de Blas et al. `18]
$\Phi_{(6)}$	0	$(ar{6}, 1)_{2/3}$	O_{dd}
${\mathcal B}$	1	$(1,1)_0$	$O_{ll}, O_{qq}^{(1)}, O_{lq}^{(1)}, O_{ee}, O_{dd}, O_{uu}, O_{ud}^{(1)}, O_{le}, O_{qe}, O_{ld}, O_{lu}, O_{qd}^{(1)}, O_{lu}, O_{qd}^{(1)}, O_{lu}, O_{lu}^{(1)}, O_{l$
			$O_{qu}^{(1)}, O_{HD}, O_{H\Box}, O_{eH}, O_{dH}, O_{uH}, O_{Hl}^{(1)}, O_{Hq}^{(1)}, O_{He}, O_{Hd}, O_{Hu}$
${\cal G}$	1	$({f 8},{f 1})_0$	$O_{qq}^{(1)}, O_{qq}^{(3)}, O_{dd}, O_{uu}, O_{ud}^{(8)}, O_{qu}^{(8)}, O_{qd}^{(8)}$

loopholes?

right-handed down sector...

• is this relevant in the UV model landscape? YES!

[Giudice, Gripaios, Sundrum `11] ... [CE, Mayer, Naskar, Renner `24]

State	Spin	SM charges	ſ	$SO(6) \times SO(5)$		
$\Phi_{(3)}$	0	$({f 3},{f 1})_{2/3}$.	and the second	$\frac{U(3)_c \times U(1)_t \times SU(2)_L \times SU(2)_R}{SU(3)_c \times U(1)_t \times SU(2)_L \times SU(2)_R}$		
$\Phi_{(6)}$	0	$(ar{6}, 1)_{2/3}$	<u>ا</u>			
				$Sp(6) \times SO(5)$		
			$SU(3)_c$	$\times U(1)_s \times SU(2)_L \times SU(2)_R$		

...scalar diquarks probe different partial composites scenarios!

coloured exotica vs lepton-specific

direct production at hadron colliders, degenerate exclusion projections

Summary

• we have lots of puzzles but no substantiated answers

- we have lots of puzzles but no substantiated answers (yet)
- ...but data is coming challenging our assumptions/methods/...
- combining the largest energy with the highest precision through theoretically robust methodology might hold answers to some Qs
- can expect good improvement towards HL-LHC
- FCC-ee prospects to go beyond the HL-LHC... (not discussed here)