

Latest results from XENONnT

Probing Neutrino and Dark Matter Interactions

Florian Jörg florian.joerg@physik.uzh.ch March 26, 2025 - Recontres de Moriond (Electroweak Interactions)

The XENON-family

- 200+ scientists
- 30 institutions
- 12 countries

INFN

1010 B 91000

Gai

XENONnT Experiment

- Laboratorio Nazionali del Gran Sasso (LNGS, Italy)
- Depth: 1400m (3800 m.w.e)
- 1. Active Muon Veto (MV) JINST 9 P11006, [1406.2374]
- Gadolinium-doped Water Cherenkov Neutron Veto (NV)
 [2412.05264]
- 3. LXe Dual Phase Time Projection Chamber (TPC) with 5.9 tonnes active volume

Eur. Phys. J. C 84, 784 (2024), [2402.10446]

Science Data

- Using data from first two science runs of XENONnT
 - SRO: 108.0 days
 - SR1: 208.5 days
- Fiducial mass: \sim 4 tonnes
- Exposure:
 3.5 tonnes × years
- Blind analysis

Goals:

- Detect CE*ν*NS from ⁸B solar neutrinos √
- Search for WIMPs √ see: [2502.18005]
- Further channels (pp-neutrinos, $0\nu\beta\beta$, ...)

⁸B Solar neutrinos in XENONnT

Nature volume 562, pages505-510 (2018)

Florian Jörg | Latest results from XENONnT

Efficiency at low recoil energies

- ⁸B spectrum drops steeply above 3 keV!
- Looking only at events with: **S1:** 2 or 3 PMT hits and **S2:** Between 120 - 500 PE \approx 4 - 17 electrons.
- ~17× higher CEvNS rate compared to 3-fold coincidence (dashed lines)!

But:

- Higher background
- Require low energy calibration
- \Rightarrow Done using YBe source [2412.10451]

Accidental Coincidence (AC) Background

- Dominant background close to threshold
- Events from incorrectly paired S1 and S2 signals
- Raw AC rate \sim 400 per day
 - "Isolated" S1: \sim 15 Hz
 - "Isolated" S2: \sim 0.15 Hz
- Events are mitigated using:
 - Boosted decision tree using S1 waveform
 - Boosted decision tree using S2 waveform
 - Correlation with a preceding high energy interaction (see next slide)

Accidental Coincidence (AC) Background

- Delay time: $\Delta t_{
 m prev}$ wrt. preceding large S2.
- Variable ${
 m S2}_{
 m prev}/\Delta t_{
 m prev}$ is part of likelihood function
- Large value = close to a large preceding S2

Unblinded dataset

Expected events: 38.3 ± 4

- Background: (26.4 \pm 1.4)
- Signal: (11.9 \pm 4)

Observed events: 37

- Background only hypothesis rejected at 2.73 σ!
- Goodness of fit (GOF) test performed to check for mismodelling (95% CL)

Unblinded dataset

Expected events: 38.3 ± 4

- $-\,$ Background: (26.4 \pm 1.4)
- Signal: (11.9 \pm 4)

Observed events: 37

- Background only hypothesis rejected at 2.73 σ!
- Goodness of fit (GOF) test performed to check for mismodelling (95% CL)
- ${\rm S2}_{\rm pre}/\Delta t_{\rm pre}$ below GOF threshold. No indication for mismodelling found.
- Investigation ongoing, higher statistics might resolve the tension
- Note: Removing this dimension from analysis would **increase** the significance to 3.22σ

⁸B CE ν NS Results

XENONnT: Phys. Rev. Lett. 133 (2024), 191002 PandaX: Phys. Rev. Lett. 133 (2024) 19, 191001

⁸B CE ν NS Results

- $\begin{array}{l} \ \mbox{Fix cross-section} \rightarrow \mbox{Measurement of} \\ \mbox{the solar 8B flux:} \\ (4.7^{+3.6}_{-2.3}) \times 10^6 \, \mbox{cm}^{-2} \mbox{s}^{-1} \end{array}$

- Compatible with standard model prediction \checkmark

$$- rac{d\sigma}{dE_R} \sim N^2$$

Dark matter search in the neutrino fog

Search for light WIMPs among the neutrinos

Summary & Outlook

- XENONNT & PandaX-4T are first to measure CEνNS on xenon from astrophysical source
- Measurement of ⁸B CEνNS at 5σ is in reach within the lifetime of the experiment!

- XENONnT conducted first dark matter search in the "neutrino fog"
- XENONnT will be collect more data, operation until ~ 2028.
- Further exciting results will come soon!

Thank you for your attention! Looking forward to your questions.

Backup slides

WIMP spectrum and detection efficiency

Astrophysical inputs

- Local DM density $ho_{
 m 0}\sim 0.3 {
 m GeV/cm}^3$
- DM velocity distribution $f(\vec{v})$

Particle physics

• WIMP - nucleon cross section $\sigma_{\chi, \scriptscriptstyle N}$

Detector physics

- Target material: atomic mass m_A and total mass M_T
- Energy threshold: v_{\min} and detection efficiency $\epsilon(E_{\text{Recoil}})$

XENONnT: PRL 131, 041003 (2023)

Some subsystems of the XENONnT detector

Dual-phase TPC

JCAP11(2020)031, arXiv: 2007.08796

Neutron veto

arXiv: 2412.05264

LXe purification

EPJC 82 (2022) 860, arXiv: 2205.07336

Radon distillation

EPJC82(2022)12,1104, arXiv:2205.11492

Signal and background prediction

Electronic recoils (ER)

- Flat spectrum from 0 to 10 keV
- Response of LXe to low energy ERs uncertain. Assign a conservative 100% uncertainty

Radiogenic neutrons (RG)

• 58% uncertainty from side band of neutron veto tagged events

Surface background

- Reduced to negligible levels by spatial selection (fiducial volume)
- Not included in the likelihood

⁸B neutrino signal

- 35% uncertainty from detection efficiency and signal yield in LXe.
- Flux is kept as a free parameter

The Likelihood function

- Binned likelihood in 4D parameter space
 - -3x3x3x3=81 bins
 - Separate terms for SR0 & SR1
 - Constraints on rates and yields from ancillary measurements
- Data-driven AC background
- Other background and signal models from simulations
- Surface background: Derived from data;
 FV chosen such that it can be neglected in the likelihood

Validation of AC background

- Data driven AC model: Resampling isolated S1/S2 pulses into synthetic events
- Dominant background, needs validation!
- Define an AC sideband by inversion of anti-AC cuts

AC sideband

Expected: 425.2 events

Observed: 447 events

 Propagate uncertainties from the sideband into background prediction

Additional event distributions - SR0 vs. SR1

Additional event distributions - Event position

Calibration at lowest energies

- Calibration with an external YBe source
- ⁸⁸Y emits a high energy gamma: γ + ⁹Be \rightarrow n + ⁸Be
- Delivers quasi-monoenergetic low energy neutrons (\sim 152 keV)
- Similar recoil spectrum like ⁸B neutrinos

Calibration at lowest energies

⇒ Constrain of light and charge yield at lowest energies

- Still, the uncertainty is the dominant systematic in the study

Calibration at lowest energies

⇒ Constrain of light and charge yield at lowest energies

- Still, the uncertainty is the dominant systematic in the study

Additional event distributions - Analysis dimensions

New: 3-fold WIMP search

- Search for WIMP-nucelon interaction using the SR0+SR1 data (3.1 tonne \times year)
- Several side-band and goodness of fit validations
- No excess over expected background observed ⇒Upper limit improved by ~x1.5

Charge yield of ¹²⁴Xe DEC

 Suppressed charge yield observed for single electron capture of ¹²⁵Xe

5

2

1

1/2

1/5

10

relative to nominal sensitivity

- New pre-print from LZ on the details: [2503.05679]
- But: No measurement available at the XENONnT electric field

Perform a PI R test at unblinding. Insufficient evidence to reject the pure β model!

WIMP mass $M_{\rm DM}$ [GeV/ c^2]