

Prospects for neutrino physics with the Hyper-Kamiokande experiment

Aurora Langella for the Hyper-Kamiokande Collaboration

INFN Naples – Università degli Studi di Napoli Federico II

Rencontres de Moriond 2025

3/25/2025

The Hyper-Kamiokande Experiment

- Search Strain St
- International Collaboration:
- 22 countries
- 106 institutes
- ~650 members
- Builds on the successful strategies of **Super-K** and **T2K**
- Larger detector → ~8.4× Super-K volume (187 kT)
- Improved PMT + new mPMTs → higher detection efficiency
- More powerful beam \rightarrow 1.3 MW vs. 0.8 at present
- Upgraded near detectors + new intermediate detector (IWCD)

Broad Physics Program

Neutrino oscillations with accelerator and atmospheric v:

- CP violation
- Neutrino mass ordering (MO)
- θ₂₃ octant determination

Astrophysical neutrinos:

- Solar neutrinos
- Supernova burst neutrinos
- Diffuse Supernova Neutrino Background (DSNB)

Beyond Standard Model searches:

- Proton decay
- Dark matter indirect detection

Oscillations w/ accelerator and atmospheric v

Sensitive to CP violation phase by measuring $P(\nu_{\mu} \rightarrow \nu_{e})$ vs $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

- → LBL CP sensitivity expectations:
 - Known MO: 5σ sensitivity for 62% of true δ_{CP} values after 10 years.
 - For NO and δ_{CP} = -π/2: CP conservation excluded in 3-5 years depending on systematics.

→ Atmospheric v can solve degeneracy between δ_{CP} , MO, and octant.

 Reject CP-conserving hypothesis independently from the true MO, combining atm+beam data.

Mass ordering and θ_{23} octant determination with ~ 3 - 6 σ significance after 10 years of data, depending on sin² θ_{23}

	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam
Mass	0.40	2.2 σ -	→ 3.8 σ
ordering	0.60	4.9 σ -	→ 6.2 σ
θ_{23}	0.45	2.2 σ -	→ 6.2 σ
octant	0.55	1.6 σ -	→ 3.6 σ

Astrophysical neutrinos

Hyper-Kamiokande will be a key tool for astrophysical discoveries, particularly in advancing our understanding of supernovae.

- Expected ~70,000 events per burst at 10 kpc.
- Insight into:
 - Core-collapse explosion mechanisms
 - Black hole / neutron star formation
 - Early alert system with ~1° pointing accuracy

DSNB search:

- Expected ~4 events per year (with neutron tagging in water).
- Probes:
 - History of stellar collapses
 - Cosmic star formation rate
 - Heavy element (metal) synthesis in the Universe

Search for proton decay

Hyper-K will be characterized by an unprecedented sensitivity to proton decay, enabled by the detector's large mass.

Hyper-K current status and outlook

- Construction phase started in 2021.
- Detector construction completion and start of water filling scheduled for May 2027.
- Operations expected to begin in December 2027.

Stay tuned for first data and new discoveries in neutrino physics and astrophysics!

