

LEPTOGENESIS: CONNECTING COSMOLOGY AND PARTICLE PHYSICS

Rémi Faure, IPhT Moriond conference, March 25th

WHY LEPTOGENESIS (= CREATION OF LEPTONS)?

[Planck2018]

$$\eta_B \equiv \frac{n_B}{n_{\gamma}} = (6.13 \pm 0.04) \times 10^{-10} \simeq \frac{n_B - \bar{n}_B}{n_{\gamma}}$$

Baryon-to-photon ratio

WHY LEPTOGENESIS (= CREATION OF LEPTONS)?

[Planck2018]

$$\eta_B \equiv \frac{n_B}{n_{\gamma}} = (6.13 \pm 0.04) \times 10^{-10} \simeq \frac{n_B - \bar{n}_B}{n_{\gamma}}$$

Baryon-to-photon ratio

• Such an asymmetry is **not** explained in the Standard Model

WHY LEPTOGENESIS (=CREATION OF LEPTONS)?

[Planck2018]

Baryon-to-photon ratio
$$\eta_B \equiv \frac{n_B}{n_{\gamma}} = (6.13 \pm 0.04) \times 10^{-10} \simeq \frac{n_B - \overline{n}_B}{n_{\gamma}}$$

- Such an asymmetry is **not** explained in the Standard Model
- Neutrino oscillations point at new physics in the lepton sector (non-zero neutrino masses and CP violation). Right-handed neutrinos would be good candidates to explain the oscillations.

WHY LEPTOGENESIS (= CREATION OF LEPTONS)?

[Planck2018]

Baryon-to-photon ratio
$$\eta_B \equiv \frac{n_B}{n_{\gamma}} = (6.13 \pm 0.04) \times 10^{-10} \simeq \frac{n_B - \bar{n}_B}{n_{\gamma}}$$

- Such an asymmetry is **not** explained in the Standard Model
- Neutrino oscillations point at new physics in the lepton sector (non-zero neutrino masses and CP violation). Right-handed neutrinos would be good candidates to explain the oscillations.

Leptogenesis using right-handed neutrinos (also called sterile neutrinos)

1. STANDARD Leptogenesis

Majorona sterile neutrinos can explain neutrino masses in the **Seesaw** model.

$$L = L_{SM} + (i/2 \,\overline{N}_I \gamma^{\mu} \partial_{\mu} N_I - 1/2 \,\underline{M}_I \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha} + h.c.)$$

Majorona sterile neutrinos can explain neutrino masses in the **Seesaw** model.

$$L = L_{SM} + (i/2 \,\overline{N}_I \gamma^{\mu} \partial_{\mu} N_I - 1/2 \,\underline{M}_I \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha} + h.c.)$$

Massive sterile neutrinos Majorana masses M_I

Violates Lepton number

Majorona sterile neutrinos can explain neutrino masses in the **Seesaw** model.

$$L = L_{SM} + (i/2 \,\overline{N}_I \gamma^{\mu} \partial_{\mu} N_I - 1/2 \,\underline{M}_I \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha} + h.c.)$$

Massive sterile neutrinos Majorana masses M_I The sterile neutrinos interact with the Standard Model

Violates Lepton number

Violates C and CP symmetry

Majorona sterile neutrinos can explain neutrino masses in the **Seesaw** model.

$$L = L_{SM} + (i/2 \,\overline{N}_I \gamma^{\mu} \partial_{\mu} N_I - 1/2 \,\underline{M}_I \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha} + h.c.)$$

$$Massive \text{ sterile neutrinos}$$

$$Majorana \text{ masses } M_I$$

$$The sterile neutrinos interact with the Standard Model$$

$$Wiolates \text{ Lepton number}$$

$$Violates C \text{ and CP symmetry}$$

 Standard leptogenesis: Thermal leptogenesis
 Decays of (heavy) sterile neutrinos

 ≃ 10¹⁵ GeV

 ARS leptogenesis
 Production of (light) sterile neutrinos

 $\simeq 100 \; \text{GeV}$

THERMAL LEPTOGENESIS

 $M_I \simeq 10^{15} \text{ GeV}$

[Fukugita, Yanagida, '86]

4

A lepton asymmetry is produced in sterile neutrino **decays** as they get out of equilibrium because of the **Universe expansion**.

$$\frac{N_{I}}{l_{\alpha}} \neq \frac{N_{I}}{\bar{l}_{\alpha}} = \frac{N_{I}}{\bar{l}_{\alpha}}$$

THERMAL LEPTOGENESIS

A lepton asymmetry is produced in sterile neutrino **decays** as they get out of equilibrium because of the **Universe expansion**.

ARS LEPTOGENESIS

As they are being produced in the interaction basis (Y), sterile neutrinos oscillate between different mass eigenstates (M_I).

$$M_I \simeq 100 \text{ GeV}$$

$$l_{\alpha} \longrightarrow N_{I}$$

ARS LEPTOGENESIS

As they are being produced in the interaction basis (Y), sterile neutrinos oscillate between different mass eigenstates (M_I).

2. STERILE NEUTRINOS AND PHASE TRANSITION

WHY COSMOLOGICAL PHASE TRANSITIONS?

- Naturally appear in GUTs or conformal models (extra scalar fields)
- Produce Gravitational Waves (GW) that can be detected

P1,P2: phase transitions with fast-accelerating bubbles P3,P4: phase transitions with finite velocity bubbles

[Azatov, Vanvlasselaer, Yin, 21']

Phase transition in leptogenesis:

 $\underline{M_I} \overline{N_I}^C N_I \to \lambda_I S \overline{N_I}^C N_I$

7

At some temperature
$$T_n$$
: $\langle S \rangle = 0$
 $M = 0$ \longrightarrow $\langle S \rangle \neq 0$
 $M \neq 0$

Phase transition in leptogenesis:

 $\underline{M_I} \overline{N_I}^{\,c} N_I \to \lambda_I \, S \, \overline{N_I}^{\,c} N_I$

7

At some temperature
$$T_n$$
:
 $M = 0$
 $M \neq 0$
 $M \neq 0$
 $M \neq 0$

Question

How does a **phase transition** modify standard **leptogenesis** (with sterile neutrinos)?

3. STERILE NEUTRINOS WITH **TIME-DEPENDENT MASSES**

« THERMAL-LIKE »: MASS GAIN MECHANISM

[Huang, Xie, '22]

[Chun et al., '23]

« THERMAL-LIKE »: MASS GAIN MECHANISM

[Huang, Xie, '22]

[Chun et al., '23]

« THERMAL-LIKE »: MASS GAIN MECHANISM

[Huang, Xie, '22]

[Chun et al., '23]

« THERMAL-LIKE »: MASS GAIN MECHANISM

[Huang, Xie, '22]

[Chun et al., '23]

Comparison of thermal leptogenesis with/without a phase transition

Adapted from [Chun, Dutka, Jung, Nagels, Vanvlasselaer, '23]

9

Comparison of thermal leptogenesis with/without a phase transition

More asymmetry produced in the phase transition scenario for $M_N > 10^8 \text{ GeV}$

Adapted from [Chun, Dutka, Jung, Nagels, Vanvlasselaer, '23]

9

[RF, Lavignac, 2504.XXXXX]

[RF, Lavignac, 2504.XXXXX]

[RF, Lavignac, 2504.XXXXX]

[RF, Lavignac, 2504.XXXXX]

$$T_{osc}^{ARS} = \text{oscillation temperature}$$

$$\equiv (a_R (M_2^2 - M_1^2))^{1/3}$$

$$a_R \approx 7 \times 10^{17} \text{GeV}$$

$$T_{eq} = \text{equilibration temperature}$$

$$\equiv \Gamma^{-1} = (a_R \gamma_+ (YY^+))^{-1}$$

$$\gamma_+ \approx 0.012$$

[RF, Lavignac, 2504.XXXX]]]

$$T_{osc}^{ARS} = \text{oscillation temperature}$$

$$\equiv (a_R (M_2^2 - M_1^2))^{1/3}$$

$$a_R \approx 7 \times 10^{17} \text{GeV}$$

$$T_{eq} = \text{equilibration temperature}$$

$$\equiv \Gamma^{-1} = (a_R \gamma_+ (YY^+))^{-1}$$

$$\gamma_+ \approx 0.012$$

[RF, Lavignac, 2504.XXXX]]]

$$T_{osc}^{ARS} = \text{oscillation temperature}$$

$$\equiv (a_R(M_2^2 - M_1^2))^{1/3}$$

$$a_R \approx 7 \times 10^{17} \text{GeV}$$

$$T_{eq} = \text{equilibration temperature}$$

$$\equiv \Gamma^{-1} = (a_R \gamma_+ (YY^+))^{-1}$$

$$\gamma_+ \approx 0.012$$

[RF, Lavignac, 2504.XXXX] 12

$$T_{osc}^{ARS} = \text{oscillation temperature}$$

$$\equiv (a_R (M_2^2 - M_1^2))^{1/3}$$

$$a_R \approx 7 \times 10^{17} \text{GeV}$$

$$T_{eq} = \text{equilibration temperature}$$

$$\equiv \Gamma^{-1} = (a_R \gamma_+ (YY^+))^{-1}$$

$$\gamma_+ \approx 0.012$$

[RF, Lavignac, 2504.XXXX] 12

SUMMARY AND CONCLUSION

Question

- Leptogenesis: relates cosmological observations $\eta_B \equiv \frac{n_B}{n_\gamma}$ to properties of particles (sterile neutrinos)
- Connects to Gravitational Waves detection if involves a phase transition
- Phase transitions can enhance the asymmetry production and allow a larger parameter space

Thank you for your attention!

BACK-UP SLIDES

39

Baryon-to-photon ratio
$$\eta_B \equiv \frac{n_B}{n_\gamma} = (6.13 \pm 0.04) \times 10^{-10} \simeq \frac{n_B - n_B}{n_\gamma}$$

[Planck2018]

Out of Equilibrium

Sakharov conditions for generation of matterantimatter asymmetry (1967):

- Baryon/Lepton number violation
- C (Charge) and CP (Charge-Parity) violation

Andreï Sakharov

During the **phase-transition**, the masses of the sterile neutrinos are **time dependent**. All quantities will have an explicit time dependence along the **wall**.

Aside: parameter space $-1/2 M_I \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha}$

Phase transition

Nucleation temperature T_n

ADVANTAGES OF A PHASE TRANSITION

Nonequilibrium dynamics

$$\langle S \rangle = \langle S \rangle(t)$$

 $M_I = M_I(t)$

(3rd Sakharov condition)

Different sterile neutrino constraints

$$M_{I}^{\text{High }T} \neq M_{I}^{\text{Low }T}$$

Gives the baryon asymmetry

Related to neutrino data by the Seesaw

$$L = L_{SM} + (i/2 \,\overline{N}_I \gamma^{\mu} \partial_{\mu} N_I - 1/2 \,\underline{M}_I \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha} + h. c.)$$

$$L = L_{SM} + L_S + (i/2 \,\overline{N}_I \gamma^{\mu} \partial_{\mu} N_I - 1/2 \,\lambda_{NS}^I \,S \overline{N}_I^c N_I - Y_{I\alpha} \overline{N}_I \tilde{\phi}^{\dagger} l_{\alpha} + h. c.)$$

$$M_I = \lambda_{NS}^I < S > \text{ New dynamics for the sterile sector: Phase Transition (PT)}$$

A (first-order) phase transition happens through the nucleation of bubbles of true vacuum, at a certain nucleation temperature T_n .

 $L_{S} = (\partial S)^{2} - V_{S}(S,T)$ Scalar potential V_S is responsible for the phase transition

Transition happens through the nucleation of bubbles of true vacuum, at a certain nucleation temperature T_n .