Search for Double Beta Plus Decays with NuDoubt⁺⁺

Cloé Girard-Carillo (she/her)

on behalf of the NuDoubt++ Collaboration*

Rencontres de Moriond 2025 - 23rd-30th March 2025

*Manuel Böhles, Sebastian Böser, Magdalena Eisenhuth, Cloé Girard-Carillo, Kitzia M. Hernandez Curiel, Bastian Keßler, Kyra Mossel, Veronika Palušová, Stefan Schoppmann, Alfons Weber, Miriam Weigand, Michael Wurm Johannes Gutenberg-Universität Mainz

Search for Double Beta Plus Decays with NuDoubt++

Cloé Girard-Carillo (she/her)

on behalf of the NuDoubt++ Collaboration*

Rencontres de Moriond 2025 - 23rd-30th March 2025

*Manuel Böhles, Sebastian Böser, Magdalena Eisenhuth, Cloé Girard-Carillo, Kitzia M. Hernandez Curiel, Bastian Keßler, Kyra Mossel, Veronika Palušová, Stefan Schoppmann, Alfons Weber, Miriam Weigand, Michael Wurm Johannes Gutenberg-Universität Mainz

NuDoubt+-

Best sensitivities on $T^{0\nu}_{1/2} > 10^{24-26}$ years

Rencontres de Moriond – Cloé Girard-Carillo Se

NuDoubt +-

NuDoubt+-

W

n

e⁺

- Low natural abundances of nuclei
- Challenging signatures

р

NuDoubt+-

- Suppressed decay probabilities
- Less favourable Q-values
- Low natural abundances of nuclei
- Challenging signatures

NuDoubt+-

- Suppressed decay probabilities
- Less favourable Q-values
- Low natural abundances of nuclei
- Challenging signatures
- Studies of nuclear structure models
- Valuable constraints on theoretical models
 - \rightarrow deeper understanding of underlying nuclear physics

Search for Double Beta Plus Decays with NuDoubt++

Rencontres de Moriond – Cloé Girard-Carillo

Opaque scintillator Confine light around vertex

First implementation of opaque scintillator: adding wax to LS (NoWaSH)

Novel Opaque Scintillator for Neutrino Detection C. Buck et al., 2019

Readout with grid of wavelength-shifting fibres & SiPMs

Advantages

- Good spacial resolution $(X,Y) \rightarrow PID$ capabilities
- Tunable opacity

Opaque scintillator Confine light around vertex

First implementation of opaque scintillator: adding wax to LS (NoWaSH)

Novel Opaque Scintillator for Neutrino Detection C. Buck et al., 2019

Readout with grid of wavelength-shifting fibres & SiPMs

Advantages

- Good spacial resolution $(X,Y) \rightarrow PID$ capabilities
- Tunable opacity

Slow scintillator

Separate Cherenkov and Scintillation light

Development of a Bi-solvent Liquid Scintillator with Slow Light Emission, H.Th.J. Steiger et al., 2024

Rencontres de Moriond – Cloé Girard-Carillo

Opaque scintillator Confine light around vertex

First implementation of opaque scintillator: adding wax to LS (NoWaSH)

Novel Opaque Scintillator for Neutrino Detection C. Buck et al., 2019

Readout with grid of wavelength-shifting fibres & SiPMs

E N 0 -50 0 50 -50 y [cm]

Advantages

- Good spacial resolution $(X,Y) \rightarrow PID$ capabilities
- Tunable opacity

Slow scintillator

Separate Cherenkov and Scintillation light

Advantages

- PID using Č/S ratio
- High scintillation LY \rightarrow good energy resolution
- Low energy threshold

Rencontres de Moriond – Cloé Girard-Carillo

Nu**Doubt**+-

Rencontres de Moriond – Cloé Girard-Carillo

Nu**Doubt**++

The first NuDoubt++ prototype

- ► 50% enriched krypton-78 gas
- 5 bar overpressure
- 10 kg (scintillator Mass) in central fiducial vessel

Nu**Doubt**++

The first NuDoubt++ prototype

- ► 50% enriched krypton-78 gas
- 5 bar overpressure
- 10 kg (scintillator Mass) in central fiducial vessel

OWL = Optimised Wavelength-shifting fibres PMMA fibers of ~mm diameter, coated with wavelength-shifting paint

Expected sensitivity of NuDoubt++

Nu**DOubt**+

After **20kg**.**year** exposure (~1 year operation):

- Improvement of limits on neutrinoless modes by almost 3 orders of magnitude
- First-time 5σ observation of SM modes 2vECβ+/2v2β+

Assuming Gran Sasso overburden

Expected 90% C.L. exclusion sensitivity

Expected 5 observation sensitivity

Rencontres de Moriond – Cloé Girard-Carillo

Current operations

Fiber/scintillator test bench

Prototype to test with electron beam

Investigating gas loading with overpressure

Testing gas isotope composition with a proportional counter

The NuDoubt++ collaboration

- Our website: nudoubt.uni-mainz.de
- Our first publication: Böhles, M. et al. Combining hybrid and opaque scintillator techniques in the search for double beta plus decays. Eur. Phys. J. C 85, 121 (2025)
- Stay tuned for a postdoc offer

Nu**DOubt**+

The NuDoubt++ collaboration

- Our website: nudoubt.uni-mainz.de
- Our first publication: Böhles, M. et al. Combining hybrid and opaque scintillator techniques in the search for double beta plus decays. Eur. Phys. J. C 85, 121 (2025)
- Stay tuned for a postdoc offer

NuDOubt+

Rencontres de Moriond – Cloé Girard-Carillo

Search for Double Beta Plus Decays with NuDoubt++

Some additional references

- Idea to exploit 4 or 2 annihilation gamma-rays unique signature for background suppression in search of $2v2\beta^+$ or $2vEC\beta^+$
 - Study of the neutrino mass in a double β decay, Zel'dovich Ya. B., Khlopov M. Yu.
- Ideas on hybrid detection using Cherenkov + scintillation lights to discriminate double electron decays from solar B-8 neutrino background
 - Separating double-beta decay events from solar neutrino interactions in a kiloton-scale liquid scintillator detector by fast timing, Andrey Elagin et al.
 - Space-Time Discriminant to Separate Double-Beta Decay from 8B Solar Neutrinos in Liquid Scintillator, Runyu Jiang, Andrey Elagin
- Using slow scintillators to improve separation of Cherenkov and scintillation light
 - Slow-fluor scintillator for low energy solar neutrinos and neutrinoless double beta decay, Jack Dunger, Edward J. Leming, Steven D. Biller
- Idea of exploiting ratio of Cherenkov and scintillation light in hybrid detector for the search of $\beta^+\beta^+$ decays @DBD 2022
 - Neutrinoless Double-Beta Decay Sensitivity in Hybrid Detectors, talk by Michael Wurm
- First demonstrations of the hybrid detector concept through small scale prototypes
 - Cherenkov and scintillation light separation in organic liquid scintillators, J. Caravaca et al.
 - Characterization of water-based liquid scintillator for Cherenkov and scintillation separation, J. Caravaca et al.
- Idea of opaque liquid scintillators and applications in neutrino physics
 - Neutrino physics with an opaque detector
- Concept of searches for double weak decays in opaque media by the LiquidO consortium
 - <u>R&D on 2beta with LiquidO</u>
 - Double Beta Decay Searches with LiquidO, LiquidO consortium, to be published

What about β^+ decays?

Proton-rich isotopes:

- SM: $2\nu 2\beta^+$, $2\nu EC\beta^+$ and $2\nu 2EC$ allowed \rightarrow only $2\nu 2EC$ has been observed
- ► BSM: $0\nu\beta^+EC$ and $0\nu2\beta^+$ → mono-energetic e⁺

But limited exploration of these transitions

- Suppressed decay probabilities
- Less favourable Q-values
- Low natural abundances of nuclei

- Challenging signatures:
 - 2EC signature: detection of cascade of X-rays & Auger e after EC
 - \rightarrow Q mostly carried away by the 2 v (undetected)
 - \rightarrow ROI upper bound typically \sim 100 keV
 - β^+ decays signatures: 1 (EC β^+) or 2 (2 β^+) positrons

So why are we interested in it?

- Studies of nuclear structure models
- Valuable constraints on theoretical models and calculations of NMEs
 → deeper understanding of underlying nuclear physics governing 2β

Requirements

- Excellent background suppression
- High amount of isotope loading

Today's status and challenges

Experimental Challenges

- Ultra-rare process (if it exists) \rightarrow long half-life (>10²⁶ years)
- Low-background experiments needed \rightarrow deep underground labs, radio-pure materials, advanced detection techniques, high amount of isotopes

Current and Future Experiments

- Ongoing: GERDA, EXO, CUORE, KamLAND-Zen, SuperNEMO, etc.
- Next-gen: LEGEND, nEXO, CUPID, SNO+, etc.

Why is it important?

- Lepton number violation: neutrinos are Majorana particles
- Insight into neutrinos absolute mass scale

• BSM

Half life limits need to be improved by several orders of magnitude to reach Normal Ordering

Search for Double Beta Plus Decays with NuDoubt++

Nu**DOubt**+

β+	de	cay	yS
----	----	-----	----

1	
MeV %	
2.881 0.4	:
2.775 1.3	ŧ.
2.857 0.1	
2.039 7.8	e
2.528 34.0)
2.459 8.9	I
	$\begin{array}{c ccccc} 2.881 & 0.4 \\ 2.775 & 1.3 \\ 2.857 & 0.1 \\ \hline 2.039 & 7.8 \\ 2.528 & 34.0 \\ 2.459 & 8.9 \\ \hline \end{array}$

Hybrid liquid scintillator

Separate Cherenkov and scintillation lights

Rencontres de Moriond – Cloé Girard-Carillo

²hotofraction

Particle ID through Opacity

Combining Hybrid and Opaque Scintillator Techniques in the Search for Double Beta Plus Decays, M. Böhles et al., 2024

Particle ID through Opacity

Neutrino physics with an opaque detector, LiquidO Consortium, 2021

Rencontres de Moriond – Cloé Girard-Carillo

Search for Double Beta Plus Decays with NuDoubt++

Nu**DOubt**+-

WOMs for IceCube Upgrade

Goal: improve signal-to-noise ratio by maximizing light capture

Idea: decouple photosensitive area and cathode of PMT \rightarrow Transparent tube + two PMTs at each end

R&D on improved light readout

Photons absorbed and emitted on outer surface of fibre have higher chance of being captured by total internal reflection (TIR)

First prototypes of polystyrene-based OWL-fibers

OWL = Optimised Wavelength-shifting fibres PMMA fibers of ~mm diameter, coated with wavelength-shifting paint

Gas isotope loading

- Gaseous BB isotope loaded in LS
- Henrys law: amount of dissolved gas isotope in LS proportional to its pressure
 - We want overpressure in the NuDoubt⁺⁺ detector \triangleright
- Test cell to verify amount of gas loaded in the scintillator
 - Weighing of the cell \triangleright
 - ⁸⁵Kr β decays when loaded in LS \triangleright
- Geant4 sims to optimize design/light collection of test cell (geometry, materials)

Outlet pipe PMTs Inlet pipe

The test cell is ready to be filled

LAB transparency measurements with the test cell

Next step: Loading LS with ⁸⁵Kr gas isotope

Search for Double Beta Plus Decays with NuDoubt++

Nu**DOubt**+-

Background model of NuDoubt++

Background model Assuming Gran Sasso-like overburden

Using the NuDoubt⁺⁺ concept for dark matter?

Rencontres de Moriond – Cloé Girard-Carillo

Search for Double Beta Plus Decays with NuDoubt++

Nu**DOubt**+