

Constraining NSIs with NC events at LBL exper.

Julia Gehrlein, Pedro Machado and João Paulo Pinheiro

Universitat de Barcelona

March 24, 2025

João Paulo Pinheiro (UB)

Constraining NSIs with NC events at LBL exper-

LBL

- LBL detect neutrinos over macroscopic distances; accelerator-based experiments use artificial neutrino beams.
- Main goal: observe ν_{μ} dis and ν_{e} app ;
- Near Detector (ND) normalizes flux/reduces systematics; Far Detector (FD) detects oscillations (ν_μ, ν_e CC) and monitors flux via NC events.
- **Charged Current (CC) Events:** $\nu N \rightarrow \ell N'$, producing a charged lepton;
- **Neutral Current (NC) Events:** $\nu N \rightarrow \nu N$, leaves no charged lepton;

Neutrino Beam Schematic

Near and Far detectors

Neutral Current Neutrino-Nucleon Interactions: Cross Sections Quasi-Elastic Scattering (QE):

- Low energy (E_{ν} < 3 GeV).
- Example: $\nu + N \rightarrow \nu + N$.

Resonant Scattering (RES):

- Intermediate energy (1 GeV $< E_{\nu} < 6$ GeV).
- Example: $\nu + N \rightarrow \nu + N^* \rightarrow \nu + N + \pi$.

Deep Inelastic Scattering (DIS):

- High energy ($E_{\nu} > 3 \text{ GeV}$).
- Example: $\nu + N \rightarrow \nu + X$, where X is a hadronic shower.

Non-Standard Interactions - Oscillation and Scattering Effects

The Lagrangian for neutral current non-standard interactions (NC-NSI) considered is:

Dealing with NSI cross section

J Gehrlein, P Machado, J P Pinheiro (arXiv:2412.08712)

Events with $Q^2 \rightarrow 1 \text{ GeV}^2$: Almost Free Nucleons (we are working on improving this part)

$$N_{\rm ev}^{\rm free} \propto \sum_{\alpha,\beta}^{e,\mu,\tau} \left(N_{\rho} \rho_{\alpha\beta} \sigma_{\rho}^{\alpha\beta} + N_{n} \rho_{\alpha\beta} \sigma_{n}^{\alpha\beta} \right)$$

Approx of NC events at detector:

$$N_{
m ev} \propto rac{(N_{
m ev}^{
m free})_{
m BSM}}{(N_{
m ev}^{
m free})_{
m SM}} \sigma_{
m NuWro},$$

Interpretation:

- Reweighting by NSI prefactor adjusts predictions for NSI contributions.
- NSI can enhance or suppress cross sections, modifying event rates.
- Off-diagonal terms allow interference between flavors, altering the overall interaction probability.

NC Event Spectra at NOvA's Detectors

J Gehrlein, P Machado, J P Pinheiro (arXiv:2412.08712)

NOvA data with statistical and systematic uncertainties overlaid.

- ND spectrum perfectly fits data, due to bin-to-bin uncertainties correlated between ND and FD.
- FD spectrum shows deviations in the presence of NSI.

Constraints on NC NSI Parameters at NOvA

J Gehrlein, P Machado, J P Pinheiro (arXiv:2412.08712)

Vectorial NSIs results:

 NOvA data excludes large NSI regions, addressing the LMA-Dark degeneracy.

Constraints on NC NSI Parameters at NOvA

J Gehrlein, P Machado, J P Pinheiro (arXiv:2412.08712)

Axial NSIs results:

 NOvA improves constraints on:

$$\varepsilon^{A}_{\mu\mu}, \varepsilon^{A}_{\tau\tau}, \varepsilon^{A}_{e\mu}$$

Helps break degeneracies for:

$$\varepsilon^{A}_{e\tau}, \varepsilon^{A}_{\mu\tau}$$

- Improved sensitivity over axial NSIs.
- Exclusive bounds for isospin-conserving NSIs:

$$\varepsilon_u^A = \varepsilon_d^A$$