59th Recontres de Moriond, La Thuile 2025

Neutrinoless double beta decay search in KamLAND-Zen

Patrick Decowski decowski@nikhef.nl

GRavitation AstroParticle Physics Amsterdam

Rare, but Standard Model Process:

 $2\nu\beta\beta: (A,Z) \to (A,Z+2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e$

Double Beta Decay

136Xe

A second-order process only detectable if first-order beta decay is energetically forbidden

Neutrinoless Double Beta Decay

- Extremely rare radioactive process
- Requires massive Majorana neutrino
- Lepton Number Violation
- - Measure of neutrino mass scale \rightarrow effective Majorana mass $\langle m_{\beta\beta} \rangle$

Patrick Decowski/Nikhef

Is v Majorana?

$$\begin{array}{ll} M_{\nu} & \neq & 0 \\ |\Delta L| & = & 2 \end{array}$$

 $0\nu\beta\beta:(A,Z)\to(A,Z+2)+e^-+e^-$

Model dependent - Standard interpretation: light Majorana v + SM interactions

4

Detecting 0v2ß Decay

Without energy resolution

With energy resolution

Detecting 0v2ß Decay

What mass does 0vßß measure?

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q,Z)|M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

What mass does $0v\beta\beta$ measure?

 $(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q,Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ Phase Space factor: Nuclear Matrix Element: Calculable Hard to calculate

KamLAND-Zen Collaboration

Patrick Decowski/Nikhef

Kan

KamLAND(-Zen) detector

- 1 kton Liquid Scintillator Detector
 - 6.5m radius balloon filled with:
 - 20% Pseudocumene (scintillator)
 - 80% Dodecane (oil)
 - PPO
- 34% PMT coverage
 - ~1300 17" fast PMTs
 - ~550 20" large PMTs
- Water Cherenkov veto
- Operational since 2002

Patrick Decowski/Nikhef

Located in the Kamioka Mine in Japan 1000m rock = 2700 mwe

3200 m³

Water Cherenkov Outer Detector

KamLAND(-Zen) detector

Particles interact in the LS and deposit energy. Energy is converted to light and detected by PMTs

Patrick Decowski/Nikhef

 $\sqrt{E(MeV)}$

KamLAND-Zen uses Xe-doped LS

- +Well-understood detector
- +Highly pure, self-shielding environment
- +Large $\beta\beta$ source mass, scalable
- -Relatively poor energy resolution
- -No particle identification

$$T_{1/2}^{0\nu} \propto \epsilon \frac{a}{A} \sqrt{\frac{Mt}{b\Delta E}}$$

Detector Mass, **Exposure, BG and Energy Resolution**

745 kg of ¹³⁶Xe dissolved in Liquid Scintillator

Signals and Backgrounds

- Expected signal: peak for ^{136}Xe at $Q_{\beta\beta} = 2.458$ MeV
 - Define Region of Interest (ROI) between 2.35-2.70 MeV
- Primary Backgrounds:
 - $2\nu\beta\beta$ decays
 - Cosmic muon spallation
 - Radioactive contamination, e.g. ²¹⁴Bi
 - Solar neutrinos

Patrick Decowski/Nikhef

Balloon film backgrounds: $^{238}U \sim 4 \times 10^{-12} \text{ g/g}$ 232 Th ~2 x 10⁻¹¹ g/g

Xe-LS backgrounds: 238 U ~ 1.5±0.4 x 10⁻¹⁷ g/g 232 Th ~ 3.0±0.4 x 10⁻¹⁶ g/g

IOx reduction compared to KLZ 400 IB

GEANT4 based MC with ²¹⁴Bi β + γ cascade, particle tracking, energy deposit, scintillation photon emission / propagation

Muon Spallation

Carbon-based liquid scintillator: ${}^{12}C + \mu \rightarrow \text{spallation products}$

Muon Spallation

μ + ¹³⁶Xe spallation products from FLUKA simulation, spectrum after decay

KamLAND-Zen, *Phys.Rev.C* 107 (2023) 5, 054612, arXiv:2301.09307

lsotope	T _{I/}
88Y	9.2
124	3.6
130	4.5
¹¹⁰ ln	1.8
132	8.3
118SP	2.2
122	2.2

Long-lived spallation products in the ROI T_{1/2}: **several hours to weeks** Very low rate!

- Event selection cuts:
 - Events < 2.5m from center and > 0.7m away from bottom
 - Events > 150ms after muons
 - Radioactive decays by coincidence cut rejected
 - $\overline{\nu}_{\rho}$ identified by coincidence cut rejected
 - Poorly reconstructed events rejected
 - Spallation cuts applied:

Patrick Decowski/Nikhef

- Short-lived spallation (e.g. ¹⁰C) rejected
- Long-lived (LL) spallation: tagged and untagged sample

Event Selection

 (745 ± 3) kg Xe, 1131 day lifetime \rightarrow 2100 kg-yr exposure

Vertex distribution in the ROI overlaid on ²¹⁴Bi MC

Beta-decay of ²¹⁴Bi can also include a γ at 2.448 MeV

 10^{3} ents, 10^{4} 10^{3} ate $214\mathbf{B}$ 10^{2} llated 10 Sim

- Simultaneously fit 40 equal volume bins inside of R < 2.5 m</p>
 - Inner region \rightarrow more sensitive to $0v2\beta$ decay
- Outer region → more sensitive to backgrounds on inner-balloon film
- All parameters fitted simultaneously

Vertex distribution in the ROI overlaid on ²¹⁴Bi MC

Beta-decay of ²¹⁴Bi can also include a γ at 2.448 MeV

 10^{3} ents/ 10^{4} 10^{3} ate ^{214}Bj 10^{2} llated 10 Sim

- Simultaneously fit 40 equal volume bins inside of R < 2.5 m</p>
 - Inner region \rightarrow more sensitive to $0v2\beta$ decay
- Outer region → more sensitive to backgrounds on inner-balloon film
- All parameters fitted simultaneously

Vertex distribution in the ROI overlaid on ²¹⁴Bi MC

Beta-decay of ²¹⁴Bi can also include a γ at 2.448 MeV

 10^{3} ents/ 10^{4} 10^{3} ate ^{214}Bj 10^{2} ulated 10 Sim

- Simultaneously fit 40 equal volume bins inside of R < 2.5 m</p>
 - Inner region \rightarrow more sensitive to $0v2\beta$ decay
- Outer region → more sensitive to backgrounds on inner-balloon film
- All parameters fitted simultaneously

Vertex distribution in the ROI overlaid on ²¹⁴Bi MC

Beta-decay of ²¹⁴Bi can also include a γ at 2.448 MeV

 10^{3} ents/ 10^{4} 10^{3} ate $214 B_{1}^{2}$ 10^{2} llated 10 Sim

- Simultaneously fit 40 equal volume bins inside of R < 2.5 m</p>
 - Inner region \rightarrow more sensitive to $0v2\beta$ decay
- Outer region → more sensitive to backgrounds on inner-balloon film
- All parameters fitted simultaneously

arXiv:2406.11438

Spectrum inside R<1.57m Fiducial Volume

arXiv:2406.11438

Spectrum inside R<1.57m Fiducial Volume

arXiv:2406.11438

Spectrum inside R<1.57m Fiducial Volume

90% C.L. Upper Limit < 10.0 events $\rightarrow T_{1/2} > 3.4 \times 10^{26} \text{ yr}$ [Sensitivity $T_{1/2} > 2.3 \times 10^{26} \text{ yr}$]

Combined with earlier KamLAND-Zen 400 results: $T_{1/2} > 3.8 \times 10^{26}$ years

arXiv:2406.11438

Spectrum inside R<1.57m Fiducial Volume

Effective Majorana Mass

arXiv:2406.11438

Effective Majorana Mass

arXiv:2406.11438

KamLAND2-Zen

Patrick Decowski/Nikhef

- Design sensitivity of $T_{1/2} > 2 \times 10^{27}$ yrs and $\langle m_{\beta\beta} \rangle \sim 20$ meV
 - Improved energy resolution: Winston Cones (x1.8), High-QE PMTs (x1.9)
 - 4% \rightarrow 2% (x100 reduction in 2v $\beta\beta$ BG rate)
 - State-of-the-art electronics
 - Improve BG suppression, better tag long-lived spallation
 - Improved inner balloon: scintillating balloon
 - Reduce BG originating from balloon

Transition to KamLAND2-Zen in progress!

2002-2024 **R.I.P**. KamLAND2-Zen Start in 2028

KamLAND-Zen disassembly Fall'24 onwards

Calibration system, LS and Xe support systems disassembled

- Neutrinoless double beta decay searches are the only practical method to search for Majorana neutrinos in a model-independent way
- All KamLAND-Zen data, 2.1 ton-year of exposure

Patrick Decowski/Nikhef

- $T_{1/2}^{0v} > 3.8 \times 10^{26} \text{ yr (90\% C.L.)} \rightarrow \langle m_{\beta\beta} \rangle < 28 122 \text{ meV}$
 - Currently best limit starting to probe Inverted Ordering
 - KamLAND-Zen 800 stopped operation, being dismantled → KamLAND2-Zen
- KamLAND2-Zen will have sensitivity of 2 x 10²⁷ years $\rightarrow \langle m_{\beta\beta} \rangle \sim 20$ meV

Summary

Neutrino Science with KamLAND

Highly versatile KamLAND detector allows for a broad science program...

Solar Neutrinos

Astrophysical Neutrinos (Supernovae, GRBs, etc)

The two spectra (0v2ß and Xe-spallation) are fitted simultaneously to constrain the Xe-spallation BG

Muon Spallation

KamLAND-Zen, *Phys.Rev.C* 107 (2023) 5, 054612, arXiv:2301.09307

μ + ¹³⁶Xe spallation products from FLUKA simulation

