Global Status of Neutrino Mixing as of Winter 2025

Rencontres de Moriond

Ivan Esteban

25st March 2025

With NuFIT: M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J.P. Pinheiro & T. Schwetz

I Inihertsitatea

Universidad del País Vasco

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

^{2/17} Standard Model

The Standard Model is a gauge theory based on

 $SU(3)_C \times \frac{SU(2)_L \times U(1)_Y}{U(1)_Y}$

and three fermion generations

 $\frac{(SU(3), SU(2))_{Y}}{(1,2)_{-\frac{1}{2}} (3,2)_{\frac{1}{6}} | (1,1)_{-1} (3,1)_{\frac{2}{3}} (3,1)_{-\frac{1}{3}}} \\ \frac{\binom{\nu_{e}}{e}_{L} \binom{u^{i}}{d^{i}}_{L}}{\binom{\nu_{\mu}}{\mu}_{L} \binom{c^{i}}{s^{i}}_{L}} \frac{e_{R}}{\mu_{R}} u^{i}_{R} d^{i}_{R}} \\ \frac{\binom{\nu_{\mu}}{\mu}_{L} \binom{c^{i}}{s^{i}}_{L}}{\binom{\nu_{\tau}}{\tau}_{L} \binom{t^{i}}{b^{i}}_{L}} \frac{\mu_{R}}{\tau_{R}} t^{i}_{R} b^{i}_{R}}$

with no $\nu_R \implies$ lepton flavours are *accidentally* conserved and $m_{\nu} = 0$.

- ^{3/17} There is New Physics in the lepton sector
 - We have observed neutrino flavour changes:
 - Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear, most likely to ν_{τ} (SK, MINOS, ICECUBE).
 - Accelerator ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ km (K2K, T2K, MINOS, NO ν A).
 - Some accelerator ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} at $L \sim 300/800$ km (T2K, MINOS, NO ν A).
 - Some accelerator u_{μ} appear as u_{τ} at $L \sim 300/800$ km (OPERA).
 - Solar ν_e convert to ν_μ & ν_τ (Cl, Ga, SK, SNO, Borexino).
 - Reactor $\bar{\nu}_e$ disappear at $L \sim 200$ km (KamLAND).
 - Reactor $\bar{\nu}_e$ disappear at $L \sim 1$ km (D-Chooz, Daya Bay, Reno).

Each lepton number is violated: there is physics beyond the SM.

See arXiv:2410.05380 [JHEP 12(2025) 216]

4/17 There is New Physics in the lepton sector

We have observed neutrino flavour changes (Sun, atmosphere, human-made). The minimal explanation is to give neutrinos a mass. As a consequence, leptons mix:

$$-\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W^{+}_{\mu} \sum_{ij} \left(U^{\mathsf{lep}}_{ij} \bar{\ell}_{iL} \gamma^{\mu} \nu_{jL} + U^{\mathsf{CKM}}_{ij} \bar{u}_{iL} \gamma^{\mu} d_{jL} \right) + \mathsf{h.c.}$$
$$\bar{l}_{i}$$

5/17 Neutrino flavour oscillations

To parametrise the new physics, flavour oscillations are a unique experimental window.

$$|
u_{lpha}(\mathbf{0})
angle = \sum_{i} U_{lpha i}^{\mathsf{lep} *} |
u_{i}
angle \Rightarrow |
u_{lpha}(\mathcal{L})
angle \simeq \sum_{i} U_{lpha i}^{\mathsf{lep} *} e^{-i rac{m_{i}^{2}\mathcal{L}}{2\mathcal{E}}} |
u_{i}
angle$$

 $|\nu_i\rangle$ interfere:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i
For 2ν , $P_{\mathsf{osc}} = \sin^2 \left(2\theta \right) \sin^2 \left(\frac{\Delta m^2 L}{4E} \right)$, insensitive to θ octant and Δm^2 sign.$$

5/17 Neutrino flavour oscillations

To parametrise the new physics, flavour oscillations are a unique experimental window.

$$|
u_{lpha}(\mathbf{0})
angle = \sum_{i} U_{lpha i}^{\mathsf{lep}} \, {}^{*}|
u_{i}
angle \Rightarrow |
u_{lpha}(\mathcal{L})
angle \simeq \sum_{i} U_{lpha i}^{\mathsf{lep}} \, {}^{*}e^{-irac{m_{i}^{2}\mathcal{L}}{2\mathcal{E}}} \, |
u_{i}
angle$$

 $|\nu_i\rangle$ interfere:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i$$

For 2ν , $P_{\rm osc} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$, insensitive to θ octant and Δm^2 sign. Travelling in matter, ν_e get a potential $V_{\nu_e} = \sqrt{2}G_F n_e$,

$$i \frac{d}{dx} \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \mathcal{H}_{\text{eff}} \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} ; \ \mathcal{H}_{\text{eff}} = \begin{pmatrix} \sqrt{2}G_F n_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \frac{1}{2E} U^{\text{lep}} \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & 0 \end{pmatrix} U^{\text{lep}\dagger}$$

/17 We need 3 light neutrinos

Reactor $\bar{\nu}$ in Daya Bay

/17 We need 3 light neutrinos

Reactor $\bar{\nu}$ in Daya Bay

/17 Parametrisation and open questions

Gonzalez-Garcia, Maltoni, Martinez-Soler, Pinheiro, Schwetz, IE JHEP 12(2025) 216. NuFIT 6.0, www.nu-fit.org.

We are now measuring three-neutrino effects,

• $\theta_{23} < 45^{\circ}$? $\theta_{23} > 45^{\circ}$? • CP violation?

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \propto J_{\text{lep}} = & c_{12}c_{23}c_{13}^2 s_{12}s_{23}s_{13} \sin \delta_{\text{CP}} = \\ & (0.0333 \pm 0.0006) \sin \delta_{\text{CP}} \end{split}$$

which also assess the global consistency of the framework.

/17 Parametrisation and open questions

Gonzalez-Garcia, Maltoni, Martinez-Soler, Pinheiro, Schwetz, IE JHEP 12(2025) 216. NuFIT 6.0, www.nu-fit.org.

We are now measuring three-neutrino effects,

θ₂₃ < 45°? θ₂₃ > 45°?
CP violation?

$$\begin{split} P_{\nu_{\alpha} \to \nu_{\beta}} - P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \propto J_{\text{lep}} = & c_{12} c_{23} c_{13}^2 s_{12} s_{23} s_{13} \sin \delta_{\text{CP}} = \\ & (0.0333 \pm 0.0006) \sin \delta_{\text{CP}} \end{split}$$

which also assess the global consistency of the framework.

1-2 sector

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

8/17

Dominated by solar neutrinos & long baseline reactors (KamLAND). Very different environments!

 Solar neutrino modeling updated
 Modern methodology, in agreement with
 helioseismology (Magg et al, 2203.02255)

SNO+ data!

2-3 sector

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

9/17 Mass ordering

We can determine $\Delta m^2_{3\ell}$ in

$$\begin{array}{l} \mbox{LBL, through } \nu_{\mu} \rightarrow \nu_{\mu} \\ P_{\mu\mu} \simeq 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{\mu\mu}^2 L}{4E} \right) \\ \Delta m_{\mu\mu}^2 \simeq \Delta m_{3\ell}^2 + \begin{cases} -\cos^2 \theta_{12} \Delta m_{21}^2 & \mbox{for NO} \\ \sin^2 \theta_{12} \Delta m_{21}^2 & \mbox{for IO} \end{cases} \end{array}$$

Reactors, through $\bar{\nu}_e \rightarrow \bar{\nu}_e$ $P_{ee} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)$

$$\Delta m_{ee}^2 \simeq \Delta m_{3\ell}^2 + \begin{cases} -\sin^2 \theta_{12} \Delta m_{21}^2 & \text{for NO} \\ \cos^2 \theta_{12} \Delta m_{21}^2 & \text{for IO} \end{cases}$$

Petcov, Piai, hep-ph/0112074 (2002) Choubey, Petcov, Piai, hep-ph/0306017 (2003) Nunokawa, Parke, Zukanovich-Funchal, hep-ph/0503283 (2005)

2-3 sector

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

Mass ordering

We can determine $\Delta m^2_{3\ell}$ in

$$\begin{array}{l} \mathsf{LBL, through} \ \nu_{\mu} \rightarrow \nu_{\mu} \\ P_{\mu\mu} \simeq 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{\mu\mu}^2 L}{4E} \right) \\ \Delta m_{\mu\mu}^2 \simeq \Delta m_{3\ell}^2 + \begin{cases} -\cos^2 \theta_{12} \Delta m_{21}^2 & \text{for NC} \\ \sin^2 \theta_{12} \Delta m_{21}^2 & \text{for IO} \end{cases} \end{array}$$

Reactors, through $\bar{\nu}_e \rightarrow \bar{\nu}_e$ $P_{ee} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E}\right)$

$$\Delta m_{ee}^2 \simeq \Delta m_{3\ell}^2 + egin{cases} -\sin^2 heta_{12}\Delta m_{21}^2 & ext{for NO} \ \cos^2 heta_{12}\Delta m_{21}^2 & ext{for IO} \end{cases}$$

Petcov, Piai, hep-ph/0112074 (2002) Choubey, Petcov, Piai, hep-ph/0306017 (2003) Nunokawa, Parke, Zukanovich-Funchal, hep-ph/0503283 (2005)

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

^{10/17} Mass ordering, δ_{CP} , θ_{23} octant

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2} \Delta_{31}(1-A)}{(1-A)^{2}} \qquad \qquad \Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4E} (\Delta_{31} \sim 1, \Delta_{21} \sim 10^{-2}) + \frac{\Delta_{21}}{\Delta_{31}} 8 J_{lep}^{max} \cos(\Delta_{31} + \delta_{CP}) \frac{\sin \Delta_{31} A}{A} \frac{\sin \Delta_{31}(1-A)}{(1-A)} + \mathcal{O}\left(\frac{\Delta_{21}}{\Delta_{31}}\right)^{2} \qquad A = 2\sqrt{2} G_{F} n_{e} \frac{E}{\Delta m_{31}^{2}} J_{lep}^{max} = \frac{1}{8} c_{13}^{2} s_{13} c_{12} s_{12} c_{23} s_{23}$$

Strongly correlated: we need as much data and independent determinations as possible!

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

^{11/17} T2K vs NO ν A

 $\label{eq:linear} {\tt Ivan Esteban, University of the Basque Country, \verb"ivan.esteban@ehu.eus"}.$

See arXiv:2410.05380 [JHEP 12(2025) 216]

12/17 T2K vs NO ν A

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

13/17 T2K vs NO ν A

See arXiv:2410.05380 [JHEP 12(2025) 216]

14/17 T2K vs NO ν A: is there a tension?

There are two main "tensions" in the data:

- Reactors vs accelerators in IO
- NO ν A vs T2K in NO

Can we claim that the 3ν framework does not consistently explain all data? Do we need additional New Physics?

See arXiv:2410.05380 [JHEP 12(2025) 216]

14/17 T2K vs NO ν A: is there a tension?

There are two main "tensions" in the data:

- Reactors vs accelerators in IO
- NO ν A vs T2K in NO

Can we claim that the 3ν framework does not consistently explain all data? Do we need additional New Physics?

M. Maltoni and T. Schwetz, "Testing the statistical compatibility of independent data sets," Phys. Rev. D 68, 033020 (2003) arXiv:hep-ph/0304176.

T2K vs NO ν A, *NO*: 2σ (**p** ~ **0.045**)

Reactors vs (T2K+NO ν A), *IO*: 1.4 σ (**p** ~ **0.16**)

At most 2σ . But there's many other data combinations (see the paper)

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

5/17 Atmospheric neutrino samples, and more on the mass ordering

For atmospheric neutrinos, we do not have enough information to reproduce the analysis. We have to use χ^2 tables.

Super-K (arXiv:2311.05105): $\sim 2\sigma$ rejection of IO.

But data is not particularly compatible with NO either

Ivan Esteban, University of the Basque Country, ivan.esteban@ehu.eus.

See arXiv:2410.05380 [JHEP 12(2025) 216]

5/17 Atmospheric neutrino samples, and more on the mass ordering

For atmospheric neutrinos, we do not have enough information to reproduce the analysis. We have to use χ^2 tables.

- **Super-K** (arXiv:2311.05105): $\sim 2\sigma$ rejection of IO.
- IceCube (arXiv:2405.02163): the determination of Δm_{32}^2 adds up

See arXiv:2410.05380 [JHEP 12(2025) 216]

^{6/17} Some consequences for the global picture

The mass ordering is relevant for absolute neutrino mass searches.

- $0\nu\beta\beta$: depending on nuclear matrix elements, $m_{ee} \lesssim 0.08-0.18 \text{ eV}$ (Ge, GERDA, 2009.06079) $m_{ee} \lesssim 0.028-0.12 \text{ eV}$ (Xe, KamLAND-Zen, 2406.11438)
- **Cosmology**: depending on datasets and modeling, $\sum m_{\nu} \lesssim 0.04-0.3$ eV.

Conclusions

17 / 17

- We are currently testing and overconstraining the 3ν paradigm. Either a robust understanding of Nature or a surprise awaits!
- Most parameters are determined within \sim 5%.
- A reactors + LBL tension in $\Delta m^2_{3\ell}$ within IO gives a $\sim 2\sigma$ preference for NO.
- A NO ν A + T2K tension in $\delta_{\rm CP}$ within NO gives a $\sim 2\sigma$ preference for IO.
- The global analysis is at the *maximal confusion level*, with $1\sigma-2\sigma$ hints not pointing in the same direction,
 - Only after adding IceCube and *Super-K* tables, there is preference for NO.
 - For NO, CP conservation is favored. For IO, maximal CP violation.
 - No clear preference for θ_{23} octant.
- Stay tuned!

Thanks to the rest of the NuFIT collaboration: M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, J.

P. Pinheiro, T. Schwetz. And thanks to the great work by the experimental collaborations!