Super-Kamiokande experiment

Takuya Tashiro (ICRR, University of Tokyo) on behalf of Super-Kamiokande collaboration

March 2025 Moriond EW 2025

Super-Kamiokande(SK) experiment

- SK is the world's largest underground water Cherenkov detector with a cylindrical tank of 41.4 m height and 39.3m diameter.
- Since the start of operation in 1996, SK has been taking data to explore the neutrino properties, neutrino sources, and nucleon decay.
- Discovery of neutrino oscillation by SK lead to the nobel prize in 2015.
 Now SK aims at more precise understanding of the neutrino oscillation.

2

SK detector concept

- The SK tank is filled with 50 kton of ultra-pure water (1996~2020) or gadolinium-loaded water (2020~)
- In water, a ring of Cherenkov light is emitted when a charged particle travels faster than the speed of light in water.
- The Cherenkov light is detected by ~11,000 PMTs attached to the tank wall and reconstructed as a ring.
- The particle type, momentum, direction, vertex position e.t.c. can be extracted from the amount of light, shape and direction of the ring, and photon detection time of each PMT.

Takuya Tashiro (ICRR)

Recent news: Gd-loading

- Since 2020, SK is operated with Gd-loaded water for neutron-tagging.
 - Neutron is captured by Gd and emit gamma-rays with the total energy of ~8 MeV, which make EM showers emitting Cherenkov light.
- Gd loading campaigns were held in 2020 and 2022 to make the Gd concentration 0.01% and 0.03%, respectively.

DSNB

- ▶ By the analysis of SN1987a, Kamiokande revealed that neutrinos are emitted by supernovae. (Nobel prize in 2002)
- This indicates that the Universe is filled by the neutrinos emitted from past supernovae, known as diffuse supernova neutrino background(DSNB).
- The evidence of DSNB is not observed yet. Discovery one of the goals in SK.
- In the DSNB energy range (O(1)~O(10) MeV), the $p + \bar{\nu_e} \rightarrow n + e^+$ process has the largest cross section Neutron tagging has important role and the sensitivity can be enhanced by Gd.

DSNB

- Now the search is performed on both pure water phase of 2970 days and Gd phase of 552 days (only the 0.01% concentration period).
- The evidence of the DSNB is not observed yet, but the sensitivity is reaching to the region predicted by theories.
- Further sensitivity is expected by combining more data with more Gd concentration period. Look forward to the future results.

Neutrino oscillation

Neutrino oscillation probability can be determined by the MNS parameters and mass squared differences.
MNS matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

• $\theta_{12}, \theta_{23}, \theta_{13}$ are already experimentally determined. • $\theta_{12} = 33.62^{\circ+0.78^{\circ}}_{-0.76^{\circ}} \ \theta_{23} = 47.2^{\circ+1.9^{\circ}}_{-3.9^{\circ}} \ \theta_{13} = 8.54^{\circ+0.15^{\circ}}_{-0.15^{\circ}}$

• δ_{CP} =0 is not experimentally rejected by 5 σ . (T2K rejected by 3 σ).

Mass squared differences are also determined.
Δm²₁₂ = 0.759 × 10⁻⁴eV²
Δm²₁₃ ~ = Δm²₃₂ = 23.2 × 10⁻⁴eV²
Mass ordering is not kwon yet.
m₃ ≫ m₁, m₂ (Normal ordering)
m₁, m₂ ≫ m₃ (Inverted ordering)

Atmospheric neutrino

- Atmospheric neutrino is a powerful tool to explore the neutrino oscillation.
- By the interaction between primary cosmic ray and the atmosphere, $\nu_{\mu}(\bar{\nu_{\mu}})$ and $\nu_{e}(\bar{\nu_{e}})$ are produced with the amount ratio of 2:1.

Takuya Tashiro (ICRR)

Latest result of atmospheric neutrino

- As a result of neutrino oscillation, the flavor ratio of the atmospheric neutrino depends on the zenith angle and energy.
- The oscillation pattern also depends on the mass ordering.

9

Latest result of atmospheric neutrino

- The latest analysis was performed with the data of complete pure water phase, between 1996 and 2020, corresponding to the exposure of 484.2 kton-year (more than 10 times larger than the exposure of the neutrino oscillation discovery analysis!).
- Detailed analysis of the $\nu_e, \bar{\nu}_e, \nu_\mu(\bar{\nu}_\mu)$ components depending on the zenith angle and energy set strong constraints on the oscillation parameters.

10

Takuya Tashiro (ICRR)

Latest result of atmospheric neutrino

- The latest analysis was performed with the data of complete pure water phase, between 1996 and 2020, corresponding to the exposure of 484.2 kton-year (more than 10 times larger than the exposure of the neutrino oscillation discovery analysis!).
- Detailed analysis of the $\nu_e, \bar{\nu}_e, \nu_\mu(\bar{\nu}_\mu)$ components depending on the zenith angle and energy set strong constraints on the oscillation parameters.
- It prefers the normal ordering at 92.3 % confidence level

11

Solar neutrino

- As well as the atmospheric neutrinos, neutrinos coming from the Sun (solar neutrino) is an important physics target in SK.
- It is more challenging to detect the solar neutrinos in SK than the atmospheric neutrinos because the energy range is much lower.
 - Solar neutrino is O(1) MeV while the atmospheric neutrino is typically O(10) MeV ~ GeV.
 - With the improved electronics, SK can record the events with the threshold of ~3.5 MeV in electron kinetic energy since 2008.

Solar neutrino oscillation

- In the solar neutrino energy range, only the ν_{ρ} can interact with the charged current. So the survival probability of ν_{e} can be extracted from the recorded events.
- As the θ_{13} and θ_{13} have small impact in the ν_e survival probability, θ_{12} and Δm_{21}^2 can be constrained by the solar neutrino analysis.

From Phys. Rev. D 109, 092001 (2024)

Takuya Tashiro (ICRR)

Proton decay

- Proton decay (or neutron decay) is also one of the important physics target in SK.
- Proton decay is prohibited in SM, but it is predicted by GUT models.
 Observation of proton decay can be a strong evidence of GUT.
- Two decay modes are intensively searched because they are predicted in leading models, and other possible modes are also widely searched.

Proton decay

- Other possible decay modes including neutron decay and dinucleon decay are also searched in SK.
- In most of the modes, SK sets the best limit in the world.

Decay mode	SK detector	Exposure [kt-years]	Lifetime limit [years]	Reference	Comments
$p \rightarrow e^+ \pi^0$	I–IV	450	2.4×10^{34}	[20]	Expanded FV
$p \rightarrow \mu^+ \pi^0$	I–IV	450	1.6×10^{34}	[20]	Expanded FV
$p \rightarrow v \pi^+$	I–III	173	3.9×10^{32}	[21]	
$n \rightarrow v \pi^0$	I–III	173	1.1×10^{33}	[21]	
$p \rightarrow e^+ \eta$	I-IV	373	1.4×10^{34}	In prep.	
$p \rightarrow \mu^+ \eta$	I–IV	373	7.3×10^{33}	In prep.	
$p \rightarrow e^+ \rho^0$	I–IV	316	7.2×10^{32}	[22]	A part of SK IV data
$p \rightarrow \mu^+ \rho^0$	I–IV	316	5.7×10^{32}	[22]	A part of SK IV data
$p \rightarrow e^+ \omega$	I–IV	316	1.6×10^{33}	[22]	A part of SK IV data
$p \rightarrow \mu^+ \omega$	I–IV	316	2.8×10^{33}	[22]	A part of SK IV data
$n \rightarrow e^+ \pi^-$	I-IV	316	5.3×10^{33}	[22]	A part of SK IV data
$n \rightarrow \mu^+ \pi^-$	I–IV	316	3.5×10^{33}	[22]	A part of SK IV data
$n \rightarrow e^+ \rho^-$	I–IV	316	3.0×10^{31}	[22]	A part of SK IV data
$n \rightarrow \mu^+ \rho^-$	I-IV	316	6.0×10^{31}	[22]	A part of SK IV data
$p \rightarrow e^+ \pi^0 \pi^0$	I-V	401	7.2×10^{33}	In prep.	
$p \rightarrow \mu^+ \pi^0 \pi^0$	I-V	401	4.5×10^{33}	In prep.	
$p \rightarrow e^+e^+e^-$	I–IV	373	3.4×10^{34}	[23]	
$p \rightarrow \mu^+ e^+ e^-$	I–IV	373	2.3×10^{34}	[23]	
$p \rightarrow \mu^- e^+ e^+$	I–IV	373	1.9×10^{34}	[23]	
$p \rightarrow e^+ \mu^+ \mu^-$	I–IV	373	9.2×10^{33}	[23]	
$p \rightarrow e^- \mu^+ \mu^+$	I–IV	373	1.1×10^{34}	[23]	
$p \rightarrow \mu^+ \mu^+ \mu^-$	I–IV	373	1.0×10^{34}	[23]	
$p \rightarrow e^+ \nu \nu$	I–IV	273	1.7×10^{32}	[24]	A part of SK IV data
$p \rightarrow \mu^+ \nu \nu$	I–IV	273	2.2×10^{32}	[24]	A part of SK IV data
$p \rightarrow e^+ X$	I–IV	273	7.9×10^{32}	[25]	A part of SK IV data
$p \rightarrow \mu^+ X$	I–IV	273	4.1×10^{32}	[25]	A part of SK IV data
$n \rightarrow \nu \gamma$	I–IV	273	5.5×10^{32}	[25]	A part of SK IV data
$p \rightarrow \nu K^+$	I–IV	365	8.2×10^{33}	[26]	A part of SK IV data
$p \rightarrow \mu^+ K^0$	I–IV	373	3.6×10^{33}	[27]	
$p \rightarrow e^+ K^0$	I	92	1.3×10^{33}	[28]	
$p \rightarrow \mu^+ K^0$	Ι	92	1.0×10^{33}	[28]	

From the presentation by S.Mine in NNN23

$pp \rightarrow e^+e^+$	I–IV	373	4.2×10^{33}	[29]	
$nn \rightarrow e^+e^-$	I–IV	373	4.2×10^{33}	[29]	
$nn \rightarrow \gamma\gamma$	I–IV	373	4.1×10^{33}	[29]	
$pp \rightarrow e^+ \mu^+$	I–IV	373	4.4×10^{33}	[29]	
$nn \rightarrow e^+\mu^-$	I–IV	373	4.4×10^{33}	[29]	
$nn \rightarrow e^- \mu^+$	I–IV	373	4.4×10^{33}	[29]	
$pp \rightarrow \mu^+ \mu^+$	I–IV	373	4.4×10^{33}	[29]	
$nn \rightarrow \mu^+ \mu^-$	I–IV	373	4.4×10^{33}	[29]	
$pp \rightarrow \pi^+\pi^+$	I–IV	282	7.2×10^{31}	[30]	A part of SK IV data
$pn \rightarrow \pi^+ \pi^0$	I-IV	282	1.7×10^{32}	[30]	A part of SK IV data
$nn \rightarrow \pi^0 \pi^0$	I–IV	282	4.0×10^{32}	[30]	A part of SK IV data
$np \rightarrow e^+ v$	I–IV	273	2.6×10^{32}	[25]	A part of SK IV data
$np \rightarrow \mu^+ \nu$	I–IV	273	2.2×10^{32}	[25]	A part of SK IV data
$np \rightarrow \tau^+ \nu$	I–IV	273	2.9×10^{31}	[25]	A part of SK IV data
$pp \rightarrow K^+K^+$	I	92	1.7×10^{32}	[31]	
$n \rightarrow \overline{n}$	I–IV	373	3.6 × 10 ³²	[32]	

Recent attempts

Conventional

fiducial volume

fiducial volume

• SK tries to realize more sensitive analysis by many attempts.

Enlarged fiducial volume

- ▶ In the convention analyses, the fiducial volume is defined as the volume >2m from the wall.
- ▶ Enlarged fiducial volume is defined as >1m, Corresponding to ~20% increase of the exposure.
- The latest $p \rightarrow e^+ \pi^0$ and $p \rightarrow \mu^+ \pi^0$ analysis was performed using the enlarged volume Enlarged
 - PhysRevD.102.112011

Neutron tagging

- Neutron tagging is applied to minimize the background from the atmospheric neutrinos.
- Neutron tagging with pure water is adopted in the data of $2008 \sim$.
- Analyses with more sensitive tagging by Gd will be published in near future.

Takuya Tashiro (ICRR)

Latest published analysis

• The search for $p \rightarrow e^+\eta$, $p \rightarrow \mu^+\eta$ using the data of 1996-2018 was published in <u>Phys. Rev. D 110, 112011 (2024)</u>.

• No significant excess was observed and the lower lifetime limit was set: $\tau/\Gamma > 1.4 \times 10^{34}$ years $(p \to e^+\eta), 7.3 \times 10^{33}$ years $(p \to \mu^+\eta)$

Summary

- Since the start of the operation in 1996, SK has been exploring important cosmological and elementary particle physics, including neutrino and proton decay.
- In 2020, SK was upgraded by adopting the Gd-loaded water to enhance the neutron tagging performance. Now the neutron capture efficiency of 75% is achieved by the Gd concentration of 0.03%.
- In both neutrino and proton decay fields, SK has been updating many analysis channels.
- In near future, new physics results with new neutron-tagging techniques by Gd will be presented.
 Keep Watching SK.

Back up