

Outline

- ν oscillation for accelerator long baseline
- T2K Oscillation analysis

- Joint oscillation analyses
- T2K Cross-section results
- T2K upgrades

Long baseline accelerator

Accelerator LBL

- Oscillation is parametrized by: $sin^2 \theta_{ij}$, Δm_{ij}^2 , δ_{CP}
 - Depends also on experimental condition: L/E, medium crossed (Matter effect => Mass ordering)

Long baseline accelerator

Accelerator LBL

Oscillation at long baseline:

Produce $\nu_{\mu}/\overline{\nu_{\mu}}$ beam and perform the measurement of rate, energy and flavor before and after oscillation

Disappearance channel

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = P(\frac{L}{E}; \theta_{23}, \Delta m_{32}^2)$$

 Δm_{23}^2

ð

- Oscillation is parametrized by: $sin^2 heta_{ij}$, Δm_{ij}^2 , δ_{CP}
 - Depends also on experimental condition: L/E, medium crossed (Matter effect => Mass ordering)

Long baseline accelerator

Accelerator LBL

Oscillation at long baseline:

Produce $\nu_{\mu}/\overline{\nu_{\mu}}$ beam and perform the measurement of rate, energy and flavor before and after oscillation **Disappearance channel**

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = P(\frac{L}{E}; \theta_{23}, \Delta m_{32}^2)$$

<u>Appearance channel</u>

$$P(\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}) = P(\frac{L}{E}; \theta_{23}, \theta_{13}, \Delta m_{21}^{2}, \Delta m_{23}^{2}, \pm \sin \delta_{CP})$$

- Exclusion of $\delta_{CP} = 0, \pi$?; Value of δ_{CP} ?
- Mass ordering (sign of Δm_{32}^2 ?)
- Octant of $\theta_{23} \rightarrow (<0.5, >0.5, maximal)?$

- Oscillation is parametrized by: $sin^2 \theta_{ij}$, Δm_{ij}^2 , δ_{CP}
 - Depends also on experimental condition: L/E, medium crossed (Matter effect => Mass ordering)

• **Beam:** 30 GeV protons on a graphite target, producing Kaons and Pions

FHC, RHC precise

Upgraded ND280 completed

Frequentist approach (Bayesian also available)

Sequential fit of ND and then FD data

Flux Prediction Proton beam measurement with NA61/SHINE inputs

Flux:

- Clear impact of tuning
- Error below 10% at T2K energies

Frequentist approach (Bayesian also available)

Sequential fit of ND and then FD data

Interaction models:

Frequentist approach (Bayesian also available)

Sequential fit of ND and then FD data

ND Fit:

- Same analysis as Neutrino-2022
- Flux and cross-section model is fitted on ND data
 - 12 samples in p_u and $\cos(\theta_u)$
- Predictions at FD are then made based on this tuning

Frequentist approach (Bayesian also available)

Sequential fit of ND and then FD data

Update of the analysis:

- Add run 11 (10% statistics in ν -mode), first

T2K-only oscillation results

δ_{CP} :

- Preference for $\delta_{CP} \approx -\frac{\pi}{\gamma}$
- Jarlskog-invariant gives a parametrized independent way to measure CP violation
- CP conservation excluded at >2 σ in case of IO and <2 σ for NO

θ_{23} and mass ordering:

Preference for NO and upper octant but not significant

Best fit:

	Normal ordering	Inverted ordering
$\sin^2(heta_{13})/10^{-3}$	$(21.9^{+0.9}_{-0.5})$	$(22.0^{+1.0}_{-0.4})$
δ_{CP}	$-2.08\substack{+1.33\\-0.61}$	$-1.41\substack{+0.64\\-0.82}$
$\Delta m^2_{32}~(\mathrm{NO})/\Delta m^2_{31}~(\mathrm{IO})$	$(2.521^{+0.037}_{-0.050})10^{-3}\mathrm{eV^2/c^4}$	$(-2.486^{+0.043}_{-0.044})10^{-3}\mathrm{eV^2/c^4}$
$\sin^2(heta_{23})$	$0.568^{+0.024}_{-0.125}~(90\%)$	$0.567^{+0.021}_{-0.048} \ (90\%)$

First presented at Neutrino 2024 : https:// doi.org/10.5281/zenodo.12704703

Frequentist

Combining results

T2K-only limitations:

T2K-SK joint fit

First Joint Oscillation Analysis of Super-Kamiokande Atmospheric and T2K Accelerator Neutrino Data, T2K and SK collaborations, 2025 10.1103/PhysRevLett.134.011801

Challenges :

- Huge work was made to unify model and systematic uncertainties
- Correlations were evaluated between T2K beam and SK atmospheric samples

Results :

- δ_{CP}:
 - The bayesian approach is excluding the CPconserving values of the Jarlskog invariant with a significance between 1.9-2 σ
 - Frequentist approach is getting p(CPC)=0.037corresponding to a 2σ level
- Mass ordering:
 - Normal ordering is preferred with a p-value for IO of 0.08

	$\sin^2 heta_{13}$	$\delta_{\scriptscriptstyle \mathrm{CP}}$	$\Delta m^2_{32} \ [10^{-3} \ {\rm eV^2}]$	$\sin^2 heta_{23}$
Normal ordering	0.0220	$-1.76\substack{+0.60\\-0.74}$	$2.514\substack{+0.057\\-0.060}$	$0.471\substack{+0.104\\-0.017}$
Inverted ordering	0.0219	$-1.49\substack{+0.50\\-0.52}$	$2.485\substack{+0.056\\-0.061}$	$0.556\substack{+0.021\\-0.033}$

experiments Fraction _

	nteraction Model Summary			
	"Low-energy" samples SK FC sub-GeV and T2K	"High-energy" samples SK FC multi-GeV, PC, Upmu		
Charged Current Quasi-Elastic (CCQE)	T2K model with ND280 constraint, correlated in low-E/highE (except for high-Q ² parameters)			
	high-Q ² params w/ND280	high-Q ² params w/o ND		
	+ extra v_e/v_μ xsec diff. error			
Two particles two holes (CC2p2h)	T2K model w/ND280 SK model (100% error + T2K-style shape er			
Resonant Interactions	T2K model w/ND280 + new p _π shape uncertainty + extra NC1π ⁰ uncertainties	SK model for 3 dials also in T2K model, use more recent, larger T2K priors		
Deep inelastic	T2K model w/ND280 SK model			
Tau neutrino interactions	SK model (25% normalization error) correlated in low-E/highE			
Final State Interactions	T2K model w/ND280	T2K model w/o ND280 (mostly same as SK model)		
Secondary Interactions	T2K model, correlated in low-E/high-E not applied to SK Upmu samples			

T2K-NOvA joint fit

Challenges :

- Main source of correlations: Cross-section model
 - Studied artificial scenarios to see possible correlations
 - Evaluate the robustness of the fit against various models
 - Cross-experiment models after ND constraint

θ_{23} and $\left|\Delta m_{32}^2\right|$:

Results still consistent with maximal mixing of θ_{23}

δ_{CP} :

- excluded at 3σ for both mass ordering
- In case of IO, CP-conservation is excluded at 3σ

First presented at Fermilab on February, 16th, 2024 : https://indico.fnal.gov/event/62062/contributions/279004/attachments/ 175258/237774/021624_NOvAT2K_JointFitResults_ZV.pdf

Toward a better model

T2K cross-section analyses:

- T2K is also doing ν cross-section analysis
 - This is fundamental for OA since it helps to understand neutrino interactions model

NC1 π^+ cross-section measurement:

• arXiv:2503.06849v2 and arXiv:2503.06843v2

- First double-differential cross-section measurement of this channel
- Comparison with various ν interactions generators and FSI (Final State Interaction) model
 - Overall agreement is observed with tested model predictions
 - Observed a higher variation due to FSI than generators
 => Stress the importance of studying in details FSI

Future improvements

Beam upgrade:

- T2K is upgrading its beam line to increase power
 - Higher repetition rate (factor 2)
 - Reached 800kW in June 2024 (500kW before)
- Expect to reach 1.2MW by 2027
- Important increases in statistics in the next years
 - Which is the dominant error right now in OA results

ND280 upgrade:

- T2K has completed the upgrade of its ND
 - One highly segmented target, two additional TPCs at high angle, all surrounded by TOF scintillator panels

values.		r reulction nom parameter values.		
ulse: idth:	60.02 [mA] 400 [usec] 455 [nsec]	Expected PPP : Expected PPB :	2.1075e+14 2.6343e+13	
: n ch :	110/129 3	!!!! Expected Power :	783 [kW] !!	

SuperFGD

Main characteristics

- Highly segmented target made of 2 millions cubes of plastic scintillators
- Readout by a 3D array of fibres
 - Precise location of primary vertex
 - Lower threshold for protons and neutrons

Scintillator cube

WLS fibers

- Time: Time shift between (x,y,z) channels crossed by same tracks
 - ~1.2 ns time resolution per channel
- Light Yield: Measurement of the ~55k attenuation length with cosmic
 - Consistent with expectations

1x1x1 cm³ cubes Polystyrene scintillator 1.5% paraterphenyl 0.01% POPOP Chemical etched reflector WLS fiber Kuraray Y11 2-clad (Ø=1mm)

SuperFGD

Main characteristics

- Highly segmented target made of 2 millions cubes of plastic scintillators
- Readout by a 3D array of fibres
 - Precise location of primary vertex
 - Lower threshold for protons and neutrons

Performances

- Time: Time shift between (x,y,z) channels crossed by same tracks
 - ~1.2 ns time resolution per channel
- **Light Yield**: Measurement of the ~55k attenuation length with cosmic
 - Consistent with expectations

=> Allow to see hadrons!

WLS fibers

1x1x1 cm3 cubes Polystyrene scintillator 1.5% paraterphenyl 0.01% POPOP Chemical etched reflector WLS fiber Kuraray Y11

2-clad (Ø=1mm)

HATPC concept

Atmospheric pressure TPC

- Gas: T2K mixture (95 Ar 3 CF4 2 isoC4H10)
- New gas system -> contaminants better than 10ppm
- Drift length 1m
 - Central cathode @ 27kV
- Low material budget
 - Thin wall thanks to composite materials

Encapsulated Resistive Anode Micromegas (ERAM)

- Benefits from ILC TPC & RD51 (now DRD1)
- Bulk micromegas with a resistive layer (DLC) for charge spreading
 - Improves spatial resolution for same pads density
 - Reduce sparks rate -> Electronic protection
- Mesh at ground -> Improves E field homogeneity

From S. Levorato CERN Seminar: here

HATPC performances

Momentum resolution $\sigma_p/p < 9\%$ at 1GeV/c (neutrino energy)

Energy resolution $\sigma_{dE/dx} < 10\%$ (PID muons and electrons)

Space resolution O(500 µm) (3D tracking & pattern recognition)

Low material budget walls ~ 3% X₀ (matching tracks from neutrino active target)

TOF concept and installation

TOF modules

- Composed of 20 plastic scintillator bars arranged in a plane with a total active area of 5.4 m²
- Readout on both ends by SiPM arrays \bullet
- Reach time resolution of ~ 150ps at CERN

TOF goals

- PID using time-of-flight •
- Tags background from out-of-fiducial volume
- Provide T0 to HATPCs \bullet
- Improve SFGD neutron time-of-light lacksquaremeasurement
- Beam and horizontal muons monitoring \bullet

In addition has provided cosmic triggers to upgrade detectors

Plus 2 hidden side panels for a 4pi coverage of detectors

Conclusion

- T2K is aiming at precise measurement of LBL oscillation parameters $\theta_{23}, \Delta m_{23}^2, \delta_{CP}$ and mass ordering and cross-section analyses which are fundamental for future LBL (HK, DUNE)
- Oscillation analysis:
 - CP symmetry is excluded at 90% CL (T2K)
 - Mild preference for normal ordering and upper octant for θ_{23}
- Three main limitations of such measurement have been shown:
 - Degeneracy: Performing joint-fits with other experiments

 - Interaction models: Study ν cross-section for a better interaction model w/ ND upgrade • Statistics: T2K is upgrading its beam line and upgraded its near detector increasing the statistics
- Stay tuned for future T2K results!

Backup

Bayesian approach

• T2K is aiming at precise measurement of LBL oscillation parameters θ_{23} , Δm^2_{23} , δ_{CP} and mass ordering and cross-section analyses which are fundamental for future LBL (HK, DUNE)

