

On the ultra-rare $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay at NA62

Giuseppe Ruggiero (University of Firenze & INFN) 59° Recontres de Moriond EW+U 2025 La Thuile 25/03/2025

NA62 at CERN SPS

Main goal: study of the ultra-rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

Primary beam intensity Incoming K^+ , 75 GeV/c, 1% rms Outgoing π^+ γ /multitrack veto (LAV, LKr, IRC, SAC, HASC) Particle ID (RICH, LKr, MUV1,2,3) $20 - 30 \times 10^{11}$ protons per pulse on target from SPS Timing by KTAG ($\sigma_t \sim 70$ ps); measured by GTK; rate at GTK ~ 600 MHz Timing by RICH ($\sigma_t \sim 70$ ps); measured by STRAW; rate at Straw ~ 5 MHz $\pi^0 \rightarrow \gamma\gamma$ suppression μ^+ suppression

$K \rightarrow \pi \nu \overline{\nu}$ in the SM

- FCNC loop processes: s→d coupling and highest CKM suppression
- Very clean theoretically: SD dominated. Hadronic matrix element $\propto BR(K_{l3})$ (precisely measured)

• SM predictions: differences in calculation from choices of CKM parameters, theory uncertainty few %

	[Buras et al. EPJC 82 (2022) 7, 615]	[D'Ambrosic
$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	(7.86 ±
$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	(2.68 <u>+</u>

[D'Ambrosio et al. JHEP 09 (2022) 148]

$$(7.86 \pm 0.61) \times 10^{-11}$$

 $(2.68 \pm 0.30) \times 10^{-11}$

• Experimental status:

 $K^+ \to \pi^+ \nu \bar{\nu}$ NA62: $(10.6^{+4.1}_{-3.5}) \times 10^{-11}$ [16-18 data JHEP 06 (2021) 093]; THIS TALK [21-22 data+16-18] $K_L \to \pi^0 \nu \bar{\nu}$ KOTO: $< 2.2 \times 10^{-9}$ [21 data PRL 134, 081802]

$K \rightarrow \pi \nu \overline{\nu}$ beyond the SM

- High sensitivity to NP: significant deviation from SM predictions possible
- Weak constraints from other flavour observables
- Model-dependent correlations of variations of K^+ and K_L BR
- Sensitive to effects of lepton flavour nonuniversality

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: Analysis Strategy and Signal Selection

- ID and reconstruction of K^+ and π^+
- $K^+ \pi^+$ matching in space (CDA) and time (Δt)
- Event classification based on

 $m_{miss}^2 = (P_{K^+} - P_{\pi^+})^2$ π momentum [15-45] GeV/c

- Rejection of events with additional activity (no γ, charged particles)
- Analysis in 5 GeV bins of π^+ momentum

Suitable background rejection if

- O(100 ps) Timing between sub-detectors
 - $\geq 10^3$ Kinematic background suppression
 - $\geq 10^8$ Muon suppression
 - $\geq 10^8$ π^0 (from K⁺ $\rightarrow \pi^+\pi^0$) suppression

Decay mode	Branching Ratio [PDG]
$K^+ \to \mu^+ \nu_\mu$	(63.56 ± 0.11)%
$K^+ \to \pi^+ \pi^0$	(20.67 ± 0.08)%
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	(5.583 <u>+</u> 0.024)%
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-5}$

NA62 Post-LS2 Data Taking

Upgrades during LS2:

- Veto detectors upstream to the decay volume
- Fourth station added to the beam spectrometer
- Additional small angle calorimeter at the end of the beam line

2021 – 22 data taking

- Proton intensity +40% wrt 16-18 data
- 0.55×10^6 spills
- Improved trigger

Single Event Sensitivity

Normalization: $K^+ \rightarrow \pi^+ \pi^0$

Online (trigger) and offline selection in common with signal except rejection of additional activity Specific kinematic selection

Single Event Sensitivity (2021-22 data)

$N_{\pi\pi}^{\text{eff}}$	Effective number of normalisation events	$(1.953 \pm 0.005) \times 10^8$	
$A_{\pi\pi}$	Normalisation acceptance	$(13.410 \pm 0.005)\%$	+15% wrt 16 – 18
N_K	Effective number of K^+ decays	$(2.85 \pm 0.01) \times 10^{12}$	
$A_{\pi\nu\bar{\nu}}$	Signal acceptance	$(7.62 \pm 0.22)\%$	+20% wrt 16 – 18
$\varepsilon_{\mathrm{trig}}$	Trigger efficiency ratio	$(85.9 \pm 1.4)\%$	\times 3 better precision than 16 – 18
$\varepsilon_{\mathrm{RV}}$	Random veto efficiency	$(63.2 \pm 0.6)\%$	comparable with $16 - 18$
$\mathcal{B}_{ ext{SES}}$	Single event sensitivity	$(8.48 \pm 0.29) \times 10^{-12}$	*
$N_{\pi\nu\bar{\nu}}^{\rm SM}$	Number of expected SM $K^+ \to \pi^+ \nu \bar{\nu}$ events	9.91 ± 0.34	~10 in 16 – 18

Background (21-22 data)

Background from $K^+ \rightarrow \pi^+ \pi^0$

- Suppression: kinematics and photon vetoes
- Estimation: data selected tagging γ from π^0
- Validation: control regions in the π^+ momentum, m^2_{miss} plane
- \Rightarrow Expected: **0.85 \pm 0.05**

Hypothesis: kinematics independent from photon rejection

*CR3D: control region orthogonal to the π^+ momentum, m^2_{miss} plane

Giuseppe Ruggiero

Background from $K^+ \rightarrow \mu^+ \nu \gamma$

Not included in $K^+ \rightarrow \mu^+ \nu$ background if γ overlaps with μ at LKr

- Suppression: specific cuts on $(P_K P_\pi P_\gamma)^2$ and E_γ
- Estimation: data sample of events with signal in MUV3
- Validation: data sample with PID between μ and π
- \Rightarrow High momentum background (> 35 GeV), relevant in 21-22 data

 \Rightarrow Expected: **0.82 \pm 0.43**

"Upstream" Background

$$N_{bg} = f_{cda} \sum_{i} N_i \mathcal{P}_i^{match}$$

i Bin in $(\Delta t, N_{GTK})$ plane N Upstream sample (inverted CDA cut) f_{cda} Scaling factor "bad-to-good" cda $\mathcal{P}^{match} K^+ - \pi^+$ mismatching probability

- Suppression: Δt kaon-pion, upstream vetoes (VC, CHANTI, AntiO), BDT using spatial infos of K^+ and π^+
- Estimation: data background sample and data-driven estimation of background-to-signal sample probability
- Validation: control sample upstream enhanced
- ⇒ Dominant background

Background Validation

Upstream background validation

Sample accidental-enriched: "V3,4,5,6,9,10" Sample interaction-enriched: "V1,2,7,8" Signal region, masked: first bin "SR"

"K-decay" background validation

23/03/2023

Result from 2021-22

Result from 2021-22

Combination with 2016-18 Results

Result in context

Conclusions and Prospects

- NA62 result on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ using data from 21 22 and combination with result from 2016 18 data
- First observation of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay with 5 σ rejection of background-only hypothesis
- $BR_{2016-22} = 13.0^{+3.3}_{-3.0} \times 10^{-11}$ [JHEP 02 (2025) 191]
- In agreement with SM prediction within $1.5-1.7\sigma$
- 2023 24 data sample of the order of the 2016 22 data sample
- Analysis on-going
- NA62 will take data until start of LS3 (summer 2026)