SM predictions for charm CP violation

Maria Laura Piscopo

Nikhef Theory Group, Amsterdam

Rencontres de Moriond EW 2025

La Thuile, 25 March 2025

Introduction

Why study charm?

- $\diamond~$ Many challenges \ldots
 - * The charm quark is not very heavy $\alpha_s(m_c) \sim 0.33 \qquad \frac{\Lambda_{\rm QCD}}{m_c} \sim 0.30$
 - * There is little room for CP violation (CPV)
 - * The GIM mechanism is highly effective $m_b, m_s, m_d \ll m_W$
- $\diamond \ \ldots$ that are also opportunities
 - * Important testing ground for QCD methods
 - * High sensitivity to potential New Physics (NP) effects
 - $\ast\,$ Only possibility to study mixing in the up-type quark sector

Complementarity to K- and B-mixing

CPV in charm

CPV in charm

◊ CP violating effects in charm decays are *small* in the SM see e.g. review [Lenz, Wilkinson '20]

 $\diamond \text{ Relevant CKM parameters are } real \text{ to good approximation}$ $\lambda_b \text{ has largest relative imaginary part, but is very small in magnitude}$

◊ Strong sensitivity to CP violating NP contributions

Experimental status

♦ Discovery of CP violation in D^0 decays by LHCb [arXiv:1903.08726]

$$\Delta A_{\rm CP} \equiv A_{\rm CP} (K^- K^+) - A_{\rm CP} (\pi^- \pi^+) = (-15.4 \pm 2.9) \times 10^{-4}$$

 $\Delta a_{\rm CP}^{\rm dir} = (-15.7 \pm 2.9) \times 10^{-4}$

- ♦ Measurement by LHCb of $A_{CP}(K^-K^+)$
 - * Combination with $\Delta A_{\rm CP}$ gives [arXiv:2209.03179]

 $a_{\rm CP}^{\rm dir}(K^-K^+) = (7.7 \pm 5.7) \times 10^{-4}$ $a_{\rm CP}^{\rm dir}(\pi^-\pi^+) = (23.2 \pm 6.1) \times 10^{-4}$

$$a_{\rm CP}^{\rm dir}(f) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to \overline{f})}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to \overline{f})}$$

 $Maria\ Laura\ Piscopo$

CPV in charm

Theoretical status

- ♦ Estimate of $\Delta a_{\rm CP}^{\rm dir}$ based on LCSR^{*} largely deviates from data [Khodjamirian, Petrov '17; Lenz, MLP, Rusov '23]
 - * Triggered NP analyses e.g. [Chala, Lenz, et al. '19; Dery, Nir '19]
- ◊ Study of rescattering effects using dispersive methods
 - * Results for CPV below the experimental values

[Pich, Solomonidi, Vale Silva '23]

$$\Delta A_{\rm CP}^{\rm exp} \stackrel{?}{\gg} \Delta A_{\rm CP}^{\rm SM}$$

Light-cone sum rules [Balitsky, Braun, Kolesnischenko '89]

Theoretical status

- $\diamond~$ But also possibility to accommodate $\Delta A_{\rm CP}$ in the SM
 - * Using U-spin relations and $SU(3)_F$ symmetry e.g. [Grossman, Schacht '19]

* However, opposite sign for CP asymmetries *"U-spin anomaly"* e.g. [Bause, Gisbert, Hiller et al. '22; Schacht '23]

From analyses of topological amplitudes, or final state interactions
 e.g. [Li, Lü, Yu '19; Cheng, Chiang '19; Bediaga, Frederico, Megahlães '22]

$$\Delta A_{\rm CP}^{\rm exp} \stackrel{?}{\sim} \Delta A_{\rm CP}^{\rm SM}$$

Theoretical status

- $\diamond\,$ But also possibility to accommodate $\Delta A_{\rm CP}$ in the SM
 - * Using U-spin relations and $SU(3)_F$ symmetry e.g. [Grossman, Schacht '19]
 - * However, opposite sign for CP asymmetries "U-spin anomaly"
 e.g. [Bause, Gisbert, Hiller et al. '22; Schacht '23]
 - From analyses of topological amplitudes, or final state interactions
 e.g. [Li, Lü, Yu '19; Cheng, Chiang '19; Bediaga, Frederico, Megahlães '22]

$$\Delta A_{\rm CP}^{\rm exp} \stackrel{?}{\sim} \Delta A_{\rm CP}^{\rm SM}$$

Big efforts towards unambiguous interpretation of experimental results

The SCS decays $D^0 \rightarrow \pi^+\pi^- \text{ and } D^0 \rightarrow K^+K^$ within LCSR

The decay $D^0 \rightarrow \pi^- \pi^+$ (and similarly for $D^0 \rightarrow K^- K^+$)

- ♦ Theoretically very challenging, different topologies contribute
- $\diamond \text{ From unitarity of CKM } \lambda_d + \lambda_s + \lambda_b = 0 \qquad \qquad \lambda_q = v_{cq}^* v_{uq}$

$$\mathcal{A}(D^0 \to \pi^- \pi^+) = \lambda_d \,\mathcal{A}_{\pi\pi} \left(1 - \frac{\lambda_b}{\lambda_d} \frac{\mathcal{P}_{\pi\pi}}{\mathcal{A}_{\pi\pi}} \right)$$

Maria Laura Piscopo

The decay
$$D^0 \rightarrow \pi^- \pi^+$$
 (and $D^0 \rightarrow K^- K^+$)

♦ Using $\lambda_b/\lambda_d \ll 1$, the branching ratio becomes

$$\mathcal{B}(D^0 \to \pi^- \pi^+) \simeq |\lambda_d|^2 |\mathcal{A}_{\pi\pi}|^2$$

♦ And the CP asymmetry

$$a_{\rm CP}^{\rm dir}(\pi^-\pi^+) \simeq 2 \left| \frac{\lambda_b}{\lambda_d} \right| \sin \gamma \left| \frac{\mathcal{P}_{\pi\pi}}{\mathcal{A}_{\pi\pi}} \right| \sin \phi_{\pi\pi}$$

* Sensitive to difference of weak and strong phases γ , $\phi_{\pi\pi}$, and $\left|\frac{\mathcal{P}_{\pi\pi}}{\mathcal{A}_{\pi\pi}}\right|$

♦ Similarly for $a_{CP}^{dir}(K^-K^+)$, but with opposite sign due to $\lambda_s \approx -\lambda_d$

Penguin amplitudes using LCSR

 $\diamond \text{ Size of amplitudes } \mathcal{P}_{\pi\pi}, \mathcal{P}_{KK} \text{ determined using LCSR}$ [Khodjamirian, Petrov '17]

 \diamond Values of $|\mathcal{A}_{\pi\pi}|, |\mathcal{A}_{KK}|$ extracted from precise data on \mathcal{B}

 $\mathcal{B}(D^0 \to \pi^+\pi^-)|_{\exp} = (1.454 \pm 0.024) \times 10^{-3} \qquad \mathcal{B}(D^0 \to K^+K^-)|_{\exp} = (4.08 \pm 0.06) \times 10^{-3}$

[PDG '24]

♦ Derived bound on $\Delta a_{\rm CP}^{\rm dir}$ assuming the SM

 $|\Delta a_{\rm CP}^{\rm dir}|_{\rm SM} \le 2.3 \times 10^{-4}$ [Khodjamirian, Petrov '17]

 $\diamond~$ Can we obtain a prediction entirely in LCSR without using data?

And further test applicability of LCSR for these decays?

Decay amplitudes in naive factorisation

♦ Obtain predictions for branching fractions in NF [Lenz, MLP, Rusov '23]

$$\mathcal{B}(D^0 \to \pi^+\pi^-)\Big|_{\rm NF} = (1.90^{+0.28}_{-0.26}) \times 10^{-3} \qquad \mathcal{B}(D^0 \to K^+K^-)\Big|_{\rm NF} = (3.40^{+0.40}_{-0.35}) \times 10^{-3}$$

Using Lattice QCD for decay constants and form-factors [FLAG '19]

 $\mathcal{B}(D^0 \to \pi^+\pi^-)|_{\rm exp} = (1.454 \pm 0.024) \times 10^{-3} \qquad \mathcal{B}(D^0 \to K^+K^-)|_{\rm exp} = (4.08 \pm 0.06) \times 10^{-3}$

 $\diamond~$ Uncertainties only to the naive factorisation approximation

Errors not final, additional uncertainties not accounted

Estimate of $\Delta a_{\rm CP}^{\rm dir}$ using LCSR

♦ Compute tree-level topology for $\mathcal{A}_{\pi\pi}$, \mathcal{A}_{KK} with 3-point LCSR [Lenz, MLP, Rusov '23]

$$\frac{\mathcal{B}(D^0 \to K^+ K^-)}{\mathcal{B}(D^0 \to \pi^+ \pi^-)}\Big|_{\text{exp}} = 2.81 \pm 0.06 \qquad \frac{\mathcal{B}(D^0 \to K^+ K^-)}{\mathcal{B}(D^0 \to \pi^+ \pi^-)}\Big|_{\text{LCSR}} = 2.63 \pm 0.86$$

 $\diamond~$ The observed large $\mathrm{SU}(3)_F$ breaking is well reproduced

With no additional assumption on size of $SU(3)_F$ breaking

♦ Combination with LCSR determination for $\mathcal{P}_{\pi\pi}$, \mathcal{P}_{KK} gives

 $|\Delta a_{\rm CP}^{\rm dir}|_{\rm LCSR} \le 2.4 \times 10^{-4}$

◊ Same result as using precise experimental data

Possibility to account for correlations due to common framework/inputs

Maria Laura Piscopo

CPV in charm

Conclusions

- $\diamond\,$ Discovery of CP violation in $D^0\text{-meson}$ decays
- $\diamond~$ Solid SM prediction needed for clear interpretation of the result
 - First estimate of leading penguin amplitude with LCSR
 [Khodjamirian, Petrov '17]
 - * Use LCSR to also predict the branching ratios [Lenz, MLP, Rusov '23]
 - * Determine $\Delta a_{\rm CP}^{\rm dir}$ within the same framework

Significant reduction of theory uncertainties

 $\star\,$ First step, additional contributions can be systematically included

Thanks for the attention