SEARCH FOR LEPTON FLAVOUR VIOLATING $B^0 \to K^{*0} \tau \ell$ decays with the Belle and Belle II experiments 59th Rencontres de Moriond, La Thuile

Clotilde Lemettais on behalf of the Belle II collaboration

March 24, 2025

European Research Counce Established by the European Commissi

MOTIVATION

Search of LFV in $B \to s\tau \ell$ transitions

- LFV forbidden in SM but predicted in many NP models
- Theoretical NP predictions at level of 10^{-6} , 10^{-7} for $\mathcal{B}(B^0 \to K^{*0} \tau \mu)$ [e.g. arXiv:2407.19060]
- Modes with τ more challenging due to missing energy in τ decay
- No experimental results for $B^0 \to K^{*0} \tau e$ yet

Four modes to analyse $B^0 \to K^{*0}(\to K^+\pi^-)\tau^{\pm}\ell^{\mp}$: (OS, SS)×(e, μ) > **OS:** Opposite sign between K from K^* and prompt lepton > **SS:** Same sign between K from K^* and prompt lepton

ANALYSIS STRATEGY

- $\circ~$ Use 2019-2022 Belle II data (365 fb^{-1}) and full Belle dataset (711 fb^{-1})
- Hadronic tagging: the partner B meson is reconstructed through hadronic decays \Rightarrow No missing energy in the tag side
- Signal reconstruction: $K^{*0}(\to K^+\pi^-)\ell + 1$ track from τ for background rejection
- $\circ~$ Signal extraction from a Belle and Belle II simultaneous fit to the τ recoil mass

Selection and background rejection

- Require one track t_{τ} from τ decay for background rejection
- Loose cut-based selection on B_{tag} quality and Rest Of Events (ROE)
- Dominant backgrounds: $B \to DX, D \to K^{*0}\ell\nu_{\ell}$ in OS modes, $B \to D\ell\nu_{\ell}, D \to K^{*0}t_{\tau}$ in SS modes $(D \to K\pi\pi$ vetoes are applied)
- **BDT-based selection** with 8 BDTs $(OS\ell/SS\ell \times \text{Belle}/\text{Belle II})$ using $M(K^{*0}\ell)$, $M(K^{*0}t_{\tau})$, ROE information, event shape variables

3/5

Fit to the τ recoil mass

- Unbinned simultaneous extended maximum likelihood fit of the branching fraction on Belle and Belle II datasets
- Signal parameters fixed to the ones in simultation, background coefficients are free
- Use control channel $B^0 \to D^- D_s^+ (\to \bar{K}^{*0} K^+ / \phi \pi)$ for BDT and signal shape systematic uncertainties

	$\varepsilon_{sig}^{\text{Belle II}}$ [%]	$\varepsilon_{sig}^{\text{Belle}}$ [%]	\mathcal{B}^{fit} (×10 ⁻⁵)
OSe	0.075	0.046	$-0.24{\pm}1.44$
SSe	0.056	0.038	$1.11 {\pm} 2.65$
$OS\mu$	0.060	0.052	$0.98{\pm}1.74$
$SS\mu$	0.051	0.024	0.47 ± 2.59

• No signal is observed

CLOTILDE LEMETTAIS

March 24, 2025

4/5

UPPER LIMITS

◦ Upper limits at 90% CL on $\mathcal{B}(B^0 \to K^{*0}\tau \ell)$ are derived using asymptotic CLs approach

$$\begin{array}{l} \mathcal{B}(B^0 \to K^{*0} \tau^+ e^-) < 2.7 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^{*0} \tau^- e^+) < 5.6 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^{*0} \tau^+ \mu^-) < 3.9 \times 10^{-5} \\ \mathcal{B}(B^0 \to K^{*0} \tau^- \mu^+) < 5.1 \times 10^{-5} \end{array}$$

- First result on electron modes, not competitive with LHCb result for muon modes [1]
- $\circ~$ First search for $B^0\to K^{*0}\tau\ell$ LFV decays at B factories

 $[1] 10.1007 / \mathrm{jhep06}(2023) 143$

CLOTILDE LEMETTAIS

BACKUP

BACKUP

CLOTILDE LEMETTAIS

59th Rencontres de Moriond

The Belle II experiment at SuperKEKB

- Asymmetric e^+e^- collider at $\sqrt{s} = 10.58$ GeV corresponding to $\Upsilon(4S)$ resonance
- $\circ~$ Holds instantaneous luminosity world record: $5.1\times10^{34}~{\rm cm}^{-2}{\rm s}^{-1}$
- Pre-LS1 (2019-2022) on-resonance data : 365 fb^{-1}
- Hermetic and almost 4π detector : Reconstruction of missing energy

BACKUP 00●00

Belle and Belle II simultaneous fit – All modes

CLOTILDE LEMETTAIS

59th Rencontres de Moriond

March 24, 2025

3/5

CONTROL CHANNELS: $B^0 \to D^- D_s^+ (\to \bar{K}^{*0} K^+ / \phi \pi)$

- $\bar{K}^{*0}K^+/\phi\pi$ mimics $K^{*0}\ell$ system
- D mimics τ : reconstruct 1 track with correct charge from D decay, the other ones account for ν_{τ} missing energy and additional τ tracks in case of $\tau \to 3 prongs$
- $\circ~$ Used for BDT and signal shape systematic uncertainties

CLOTILDE LEMETTAIS

Systematic uncertainties summary

Source	Belle				Belle II				
	OSe	SSe	$OS\mu$	$SS\mu$	OSe	SSe	$OS\mu$	$SS\mu$	
FEI efficiency [%]	4.9	4.9	4.9	4.9	6.2	6.1	6.1	6.2	
Lepton ID efficiency [%]	2.0	2.4	2.2	2.2	0.7	1.1	0.7	0.6	
Hadron ID efficiency [%]	1.9	2.0	1.9	2.0	3.7	3.7	3.6	3.7	
BDT efficiency [%]	27	21	18	23	29	31	34	31	
Tracking efficiency [%]	1.4			1.1					
Total efficiency [%]	$\bar{2}\bar{7}.\bar{6}$	$\bar{2}\bar{1}.\bar{8}$	$1\bar{8}.\bar{9}$	23.7	29.8	31.8	34.7	$\bar{3}\bar{1}.\bar{7}$	
Signal PDF μ (×10 ⁻⁵)	0.04	0.00	0.01	0.01	0.04	0.00	0.01	0.01	
Signal PDF λ (×10 ⁻⁵)	0.11	0.01	0.04	0.01	0.11	0.01	0.04	0.01	
Background PDF $(\times 10^{-5})$	0.11	0.28	0.09	0.02	0.11	0.28	0.09	0.02	
$N_{\Upsilon(4S)}$ [%]	1.4			1.6					
f^{00} [%]	0.8								
$\mathcal{B}(K^{*0} \to K^+\pi^-) \ [\%]$	0.021								
Total impact on UL ($\times 10^{-5}$)	0.1	0.3	0.1	0.1	0.1	0.3	0.1	0.1	