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Why ?D → πℓ+ℓ−
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• Simplest Flavour Changing Neutral Current (FCNC) transition in charm sector  : Probe for New Physics?(c → uℓ+ℓ−)

• Unlike B-FCNCs, charm FCNC is dominated by long distance effects.

• Charm FCNCs are both theoretically and experimentally 
challenging due to intermediate resonances.
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• The effective Hamiltonian:

𝒜D+→π+γ*
μ (p, q) = i∫ d4xeiq.x⟨π+(p) |T {jem

μ (x), ℋ(Δs=0,λb=0)
eff } |D+(p + q)⟩

• Hadronic amplitude:

dominated by long distance 
effects in physical region of .q2

Non-local form factor :

Object of interest

• Vector meson can be created from non-leptonic weak decay before  : Resonance contributionsγ*
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Why ?D → πℓ+ℓ−

In  limit (along with ), 
a complete GIM cancellation
SU(3)f λb ≈ 0
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Annihilation 
Topology

Only d contribution : 
No GIM cancellation.
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• Benefits:

[In preparation, AB, Alexander Khodjamirian and Thomas Mannel]

 using LCSR supported Dispersion relationD → πℓ+ℓ−

3Anshika Bansal, Uni-Siegen 24/03/2025

An independent alternative to QCDf. 

Finite   : No  corrections unlike QCDf. 

Possibility to fix  resonance phases and heavier states (Major source of 

uncertainties in literature).

mc
1

mc

ρ, ω, ϕ

[A. Bharucha et. al., (2011.12856)]

BR(D+ → π+μ+μ−)q2∈[0.2502,0.5252] = (8.15.9
−6.1) × 10−9

BR(D+ → π+μ+μ−)q2>1.252 = (2.7+4.0
−2.6) × 10−9

Experimental bounds  approaching theory predictions

  Imp. to look for alternate QCD methods.

( < 6.7 × 10−8)
⟹

In QCDf,

[G. Hiller et al. 1510.00311, 1909.11108, 2410.00115], 

[S. Fajfer, N. Kośnik, 1510.00965 ]
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Our methodology: LCSR-supported dispersion relation

Light Cone Sum Rules 
(Only valid in space-like )q2

Dispersion relation 
(Valid for all  values)q2

Ways to compute 𝒜D+→π+γ*
𝒟 (q2)
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• Contains unknown phases between 
resonances. 

• The spectral density (higher resonance 
and continuum contribution) are 
unknown : Needs to be parametrized
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Our methodology: LCSR-supported dispersion relation

Light Cone Sum Rules 
(Only valid in space-like )q2

Dispersion relation 
(Valid for all  values)q2

Weak Annihilation Diagrams (LO) in terms of pion DAs

Loop Diagrams (LO) in terms of pion DAs

• Contribution from twist-2 distribution amplitude (DA) of pion. 

(Method used before in LCSR analysis of  and )B → 2π D → 2π, KK̄
Artificial momentum  is introduced at four vertex to avoid parasitic contributions in dispersion relation.k

[A. Khodjamirian et. al, hep-ph/0304179, hep-ph/0509049,1706.07780, hep-ph/0012271]

• Can be systematically computed as 
an expansion in twist using Light 
Cone Operator Product Expansion.

Ways to compute 𝒜D+→π+γ*
𝒟 (q2)

• Contains unknown phases between 
resonances. 

• The spectral density (higher resonance 
and continuum contribution) are 
unknown : Needs to be parametrized



(Resembling partly the analysis of nonlocal effects in )B → K(*)ℓ+ℓ−

[A. Khodjamirian, T. Mannel, A. Pivovarov, Y. Wang, 1211.0234] 

[A. Khodjamirian, A. V. Rusov, 1703.04765] , N. Gubernari, M. Rebound, D. van Dyk, J. Virto, 2011.09813

Main idea in a nutshell :
Step-1: Compute  using Light Cone Sum Rules (valid only for )


Step-2: Write the hadronic dispersion relation in terms of unknown phases and parametrize the 

spectral density (valid for all values of ).


Step-3:  Match the LCSR results with the dispersion relation at  and estimate the unknown 
phases and the parametrization parameters.


Step-4: Estimate  in the physical region using dispersion relation.

𝒜(D+→π+γ*)(q2) q2 < 0

q2

q2 < 0

𝒜(D+→π+γ*)(q2)

Our methodology: LCSR-supported dispersion relation
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Light Cone Sum Rules 
(Only valid in space-like )q2

Dispersion relation 
(Valid for all  values)q2

=
at q2 < 0

• Can be systematically computed as 
an expansion in twist using Light 
Cone Operator Product Expansion.

Ways to compute 𝒜D+→π+γ*
𝒟 (q2)

• Contains unknown phases between 
resonances. 

• The spectral density (higher resonance 
and continuum contribution) are 
unknown : Needs to be parametrized



Hadronic dispersion models and Preliminary Results
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[In preparation, AB, A. Khodjamirian and T. Mannel]

Preliminary
LCSR

3-Resonance Model

Z-model

Extended Resonance Model
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• Extended Resonance Model
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Using once subtracted dispersion relation with  as subtraction point.q2
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• 3-resonance Model: Most commonly adopted in literature.
[G. Hiller et al. 1510.00311, 
1909.11108, 2410.00115], 


[S. Fajfer, N. Kośnik, 1510.00965 ]
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[In preparation, AB, A. Khodjamirian and T. Mannel]

Preliminary 3-Resonance Model

Z-model

Extended Resonance Model
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• Excited states influence  intermediate and high  regions.q2

• Fit suggest constructive interference between /  and  
resonances.

ρ ω ϕ

• Uncertainty estimates are under progress.

Comments: 
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❖ Amplitude for  is mainly dominated by weak annihilation topology generated by , 

“Loop” and “Short distance” contributions e.g. due to  are tiny. 

❖ Contribution from higher resonances is important especially for high  region. 

❖ Preliminary fits suggest a constructive interference between  and  resonances. 

❖ We also perform U-spin analysis to relate these Singly Cabibo Suppressed modes to Cabibbo Favoured 

(CF) modes. 

❖ CF modes includes only annihilation topologies  Can be helpful to understand QCD dynamics involved. 

❖ As a byproduct we also look at CF  and  modes.

D+ → π+ℓ+ℓ− O1,2

O9

q2

ρ/ω ϕ

⟹

D+
s → π+ℓ+ℓ− D0 → K0ℓ+ℓ−

Summary and Outlook
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Thank you for your attention !!



Back up!
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Anshika Bansal, Uni-Siegen 24/10/2024 LHCb Implications’24, CERN



[G. Hiller, et. Al 1909.11108]

• Treat resonances as a correction to  : using Breit Wigner parametrizationC9

• Major source of uncertainties : unknown strong phases

[G. Hiller et al. 1510.00311, 1909.11108, 2410.00115], 

[S. Fajfer, N. Kośnik, 1510.00965 ]

Highlights from literature!
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What about Weak annihilation and higher resonances? 

𝒜(D+→π+γ*)(q2) = ∑
V=ρ,ω,ϕ

κV fV |AD+Vπ+ |eiφV

(m2
V − q2 − i q2ΓV(q2))

+ ∫
∞

sh
0

ds
ρh(s)

(s − q2 − iϵ)

• Captures higher/continuum states contribution for . 
• Needs parametrisation (model dependence).

q2 < sh
0

• Hadronic dispersion relation:

• vetoing a certain - region do not remove resonances from amplitude.q2

• Radial excitations of  and the “tail” at  are indispensable.ρ, ω, ϕ s > (mD − mπ)2
Proper QCD based 
study is important!!⟹

• QCD based analysis: QCDf for low  and OPE for high  :q2 q2

[A. Bharucha et. al., (2011.12856)]

BR(D+ → π+μ+μ−)q2∈[0.2502,0.5252] = (8.15.9
−6.1) × 10−9

BR(D+ → π+μ+μ−)q2>1.252 = (2.7+4.0
−2.6) × 10−9

[A. Bharucha et. al., (2011.12856)]

• Still open questions:
• Annihilation diagrams included in QCDf estimates: emission from initial d-quark

•  corrections (use of D-meson Distribution Amplitudes) ? 1
mc

How big are other three contributions?

kρ = 1/ 2, kω = 1/(3 2), kϕ = − 1/3
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