

Rare or forbidden B → τ decays at Belle & Belle II Moriond EWP Flavor session

Vidya Sagar Vobbilisetti on behalf of the Belle II collaboration

Outline

- > Electroweak penguin $B \rightarrow \tau$ decays \Rightarrow New Physics
- > Belle II experiment and B-tagging technique
- > Latest results in forbidden $B \rightarrow K \tau \ell$ and rare $B \rightarrow K \tau \tau$ decays
- Summary and prospects

Motivation for EWP B $\rightarrow \tau$ decays

> B anomalies in semileptonic decays and recently $B \rightarrow Kvv$ point towards possible new physics which can be present in the loops:

Motivation for EWP B $\rightarrow \tau$ decays

> B anomalies in semileptonic decays and recently $B \rightarrow K_{VV}$ point towards possible new physics which can be present in the loops:

- > Flavour Changing Neutral Current prohibited @ tree level in the standard model (SM):
 - Ideal probes of Standard Model and unique portals to New Physics
- Many new physics models propose larger coupling to third generation and/or larger mass ⇒ τ! (like leptoquarks) (Yukawa-like)
 • May cause enhancement in B → K τ τ, violating Lepton Flavor Universality (LFU)
 - [PRL 120 (2018) 18, 181802, Phys.Lett.B 848 (2024) 138411, Phys.Rev.D 109 (2024) 1, 015006]
 - May even allow Lepton Flavor Violation (LFV) like in $B \rightarrow (K) \tau \ell$ [Phys. Lett. B 848 (2024) 138411]

 \Rightarrow B-tagging and flavour tagging

All results today are based on 365 fb⁻¹ collected at Belle II Can be combined with Belle (711 fb⁻¹).

More details by previous Belle II speakers [talk by Tommy Martinov]

The Belle II detector

$B^0 \to K_s^{\ 0} \ \tau \ \ell$

- LFV transition: Forbidden in Standard Model
- > New Physics models predict up to 10^{-6}

[Phys. Lett. B 848 (2024) 138411]

- > Only one missing particle $(\tau) \Rightarrow$ Recoil mass
- > B⁰ hadronic tag has lower efficiency than B⁺
- > K_s⁰ has purity > 98%

Entries/(30 MeV/c²)

0.00

1.25

 $M_{\text{recoil}}^2 = m_{\tau}^2 = (p_{e^+e^-} - p_K - p_{\ell} - p_{B_{\text{tag}}})^2$

Bg shape

Sig shape

1 50

1.75

 m_{τ} (GeV/ c^2)

Search using combined Belle + Belle II data

 B_{sig}^0

2.25

Recoiling

 $t_{\tau}^{-} = \mu, e, \pi, \rho$

2.50

B_{ta}

2.00

> $\tau \rightarrow$ one-prong (μ , e, π , ρ) reconstruction: >70% of τ decays

+3 more

- Reject dominant background: semi-leptonic B decay with a dedicated veto
- BDT for remaining background suppression

$\mathcal{B}(10^{-5})$	
Channels $\epsilon(10^{-4})$ $N_{\rm sig}$ Central value U	JL
$B^0 \to K_S^0 \tau^+ \mu^-$ 1.7 $-1.8 \pm 3.0 -1.0 \pm 1.6 \pm 0.2 1$.1
$B^0 \to K_S^0 \tau^- \mu^+$ 2.1 2.6 ± 3.5 $1.1 \pm 1.6 \pm 0.3$ 3	8.6
$B^0 \to K_S^0 \tau^+ e^-$ 2.0 $-1.2 \pm 2.4 -0.5 \pm 1.1 \pm 0.1 1$.5
$B^0 \to K_S^0 \tau^- e^+$ 2.1 $-2.9 \pm 2.0 -1.2 \pm 0.9 \pm 0.3 0$).8

at 90% CL.

combinations Comparable to other limits among $b \rightarrow s \tau l$ transitions World's first!

arXiv:<u>2412.16470</u> submitted to PRL

8

$B^0 \to K^{*0} \ \tau \ \ell$

New for Moriond

15.0

12.5

10.0 F

7.5

5.0

2.5

0.0

10.0

Entries 2.2 2.0 1.4

Entries

 $B^0 \rightarrow K^{*0} \tau^+ e^-$

Simultaneous fit

--- Signal

Background

1.6

Background

Data

1.8

 M_{τ} [GeV/c²]

Total fit.

Data

- > LHCb measured $B^0 \to K^{*0} \tau \mu$, but no results for $B^0 \to K^{*0} \tau e$
- Search using combined Belle + Belle II data
- > $\tau \rightarrow \text{one-prong} (\mu, e, \pi, \rho)$ reconstruction
- > Vertex information of K_0^* is helpful
- > BDTs (4 modes × Belle II/Belle) for background suppression with input variables : invariant masses, ℓ/τ -prong/Rest of the event energies, eventshape variables, vertex fit variables
- Validation using tau mass sideband
- > $B^0 \rightarrow D_s^+ D^{(*)-}$ control sample for validation

ULs at 90% CL:

$$\begin{aligned} &\mathcal{B}(B^0 \to K^{*0} \tau^+ e^-) < 2.7 \times 10^{-5} \\ &\mathcal{B}(B^0 \to K^{*0} \tau^- e^+) < 5.6 \times 10^{-5} \\ &\mathcal{B}(B^0 \to K^{*0} \tau^+ \mu^-) < 3.9 \times 10^{-5} \\ &\mathcal{B}(B^0 \to K^{*0} \tau^- \mu^+) < 5.1 \times 10^{-5} \end{aligned}$$

Comparable to other limits among $b \rightarrow s \tau l$ transitions First results for $B^0 \rightarrow K^{*0} \tau e$

Belle II Preliminary

Belle preliminary $\int \mathcal{L} dt = 711 \, \text{fb}^{-1}$

 $Br = (-0.24 \pm /-1.44)e-05$

 $c1=0.326\pm/$

c2 = -0.030 + / -0

2.2

Nbkg = 99.50+/-

2.0

Br = (-0.24 + / -1)

 $c^2 = -0.21$

Belle II preliminary I L dt

$B^0 \to K^{*0} \tau \; \tau$

Belle II Preliminary Paper in preparation

- > Allowed in SM but highly suppressed: $O(10^{-7})$
- ► Excess in $B \to Kvv$, combined with $R_{K(*)}$ constraints, suggests LFU violation in τ [Phys.Lett.B 848 (2024) 138411] [Phys.Rev.D 109 (2024) 1, 015006]
- > Challenge: Two τ in the final state \Rightarrow no signal peaking kinematic observable
 - low efficiency
 - low K^{*0} momentum
- Current best UL: BF < 3.1 x 10⁻³ @ Belle using older hadronic B tagging Signal as no residual energy in calorimeter. [Phys. Rev. D 108, L011102]

NP models describing $R(D^{(*)})$ predict ×10³ branching fraction enhancement

$B^0 \to K^{*0} \tau \; \tau$

- > SM prediction: $O(10^{-7})$
- > Current best UL: BF < 3.1×10^{-3} @ Belle
- > $\tau \rightarrow \text{one-prong} (\mu, e, \pi, \rho)$ reconstruction
- > Categorized into: $\ell\ell$, $\ell\pi$, $\pi\pi$, $\rho X (X = \ell, \pi, \rho)$
- BDT based on: missing energy, residual energy in calorimeter, q², m(K*t₂)
- Additional calibrations are performed in same-flavor, off-resonance samples.
- > Validation using embedded sample with $B^0 \rightarrow K^{*0} J/\psi$
- **Twice better limit with only half sample wrt Belle!** Better tagging + more categories + BDT classifier...

Most stringent limit among $b \to s \: \tau \: \tau$ transition

Simultaneous fit of BDT score to 4 categories

The landscape now...

Results shown today are either world's best limits or first searches.

Summary

- $B \rightarrow \tau$ decays are powerful probes for physics beyond SM.
- Belle II is accumulating high-quality data and leveraging the potential of combining it with Belle data
 - suitable environment to study missing energy modes.
 - healthy complementarity with LHCb
- Results shown today are either world's best or first time searches.
 - $\circ \quad Also \ see \ B \rightarrow \tau \ v \ branching \ fraction \ measurement \ [talk \ by \ Giovanni \ Gaudino]$
- Many ongoing analyses to search for other combinations and exploring techniques beyond hadronic B-tagging.