

Tommy Martinov

on behalf of the Belle II collaboration

Introduction

New Belle II leptonic and semileptonic results using the **full Run 1 dataset of 365 fb⁻¹** or **390M** *B* \overline{B} **pairs** collected at an e^+e^- centre-of-mass energy at the Y(4S) resonance mass (10.58 GeV)

One new leptonic B decay result

arXiv:2502.04885 Submitted to PRD

- Measurement of the $B^+ \rightarrow \tau v$ branching fraction with a hadronic tagging method
 - See Giovanni Gaudino's YSF talk this evening for more details
- Two new semileptonic *B* decay results **New for Moriond !**
 - **Preliminary** Determination of $|V_{ch}|$ using $B \rightarrow D I v$ decays with an inclusive tagging method Ο
 - Test of lepton flavour universality with measurements of $R(D^+)$ and $R(D^{*+})$ using Ο semileptonic *B* tagging
 - First result using semileptonic *B* tagging !
 - First combined R(D) and $R(D^*)$ Belle II measurement !

Experimental setup

SuperKEKB

Asymmetric-energy $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ Centre-of-mass energy = 10.58 GeV World record instantaneous luminosity $5.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} (27/12/2024)$

~4π spatial coverage Well known initial state ⇒ Measurements with missing energy Run 1 luminosity: 365.37 ± 1.70 fb⁻¹

- Measurements of $|V_{qb}|$ are crucial to **constrain the CKM matrix**
- They are usually measured using semileptonic *B* decays
 - Via exclusive decays
 - $\blacksquare \quad B \to \pi \, I \, v, \, B \to D \, I \, v \dots$
 - Or via inclusive decays where no explicit requirements are applied on the hadronic system
- The two methods yield values which **differ by** $\sim 3\sigma$ for both $|V_{ub}|$ and $|V_{cb}|$

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$B \rightarrow D I v$ MEASUREMENT AT BELLE II

$$= \frac{M_B^2 + M_D^2 - q^2}{2M_B M_D} \quad q^2 = (p_\ell + p_{\nu_\ell})^2$$

$$\frac{d\Gamma(B \to D\ell\nu)}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (M_B + M_D)^2 (w^2 - 1)^{3/2} \eta_{\rm EW}^2 (w |V_{cb}|^2)$$

- The differential decay rate as a function of the recoil parameter w is proportional to $|V_{cb}|^2$ and the $B \rightarrow D$ form factors
- Studying $B \rightarrow D I v$ has 3 main advantages compared to $B \rightarrow D^* (\rightarrow D^0 \pi^+) I v$
 - Both isospin states D^0/D^+ are accessed
 - \circ The measurement doesn't depend on the reconstruction of a low-momentum π
 - Leading systematic uncertainty for $B \rightarrow D^* I v$ measurements
 - The form factor calculation is more precise
- Belle II has already measured $|V_{cb}|$ via $B \rightarrow D^* I v$ (PRD 108, 092013)

$$\circ |V_{cb}|_{BGL} = (40.57 \pm 1.16) \times 10^{-3}$$

D

 V_{cb}

B

- The Belle II measurement is performed using B⁰ and B⁺ decays without explicitly reconstructing the partner B meson from the Y(4S) → BB decay
 - $\circ \quad D^{\text{-}} \to K^{\text{+}} \pi^{\text{-}} \pi^{\text{-}} \text{ and } D^{0} \to K^{\text{-}} \pi^{\text{+}}$
- The signal is extracted using the cos θ_{BY}
 variable where Y represents the DI system

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - M_B^2 - M_Y^2}{2|p_B^*||p_Y^*|}$$

Preliminary

$B \rightarrow D I v$ measurement at Belle II

- The signal is extracted from a 2D binned template fit of $\cos\theta_{BV}$: w split in 10 bins each
- The fit is performed simultaneously on 4 separate channels D⁰e⁻, D⁰μ⁻, D⁺e⁻ and D⁺μ⁻ to extract the individual branching fractions and a lepton flavour universality test

$B \rightarrow D I v$ measurement at Belle II Results

- The differential decay rate $\Delta\Gamma/\Delta w$ in 10 w bins is obtained from the same fit
- The obtained values of $\Delta\Gamma/\Delta w$ are fitted to the differential rate expressed using the Bourrely, Caprini, Lellouch (BCL) form factor parametrisation with a χ^2 fit with lattice QCD constraints \rightarrow extraction of $|V_{cb}|$ and BCL form factor parameters

Preliminary

$B \rightarrow \tau v$ MEASUREMENT AT BELLE II

Leptonic *B* decays

- Purely leptonic *B* decays are the cleanest channels to measure |V_{ub}|
- Their branching ratio depends on the B meson decay constant which can be extracted precisely from lattice QCD
- However, they are strongly helicity suppressed and therefore hard to study
- All individual measurements are below the 5σ discovery threshold

$$\mathcal{B}(B^+ \to \ell^+ \nu_\ell) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 \left(f_B^2 V_{ub}\right)^2 \tau_B$$

$$f_B = 190.0 \pm 1.3 \text{ MeV}$$
[FLAG]

$B \rightarrow \tau v$	
------------------------	--

Experiment	Tag	$\mathcal{B}(10^{-4})$
Belle	Hadronic	$0.72^{+0.27}_{-0.25} \pm 0.11$
BABAR	Hadronic	$1.83^{+0.53}_{-0.49} \pm 0.24$
Belle	Semileptonic	$1.25 \pm 0.28 \pm 0.27$
BABAR	Semileptonic	$1.8\pm0.8\pm0.2$
PDG		1.09 ± 0.24

- The Belle II measurement is performed by reconstructing **tag-side** *B* **mesons** in their **hadronic decay channels**
 - This is necessary to constrain the event kinematics despite the presence of multiple undetected neutrinos
- The signal-side *t* is reconstructed in 4 channels to maximise the reconstruction efficiency
 - BR($\tau \rightarrow evv$) = 17.8%
 - $\circ \quad \mathsf{BR}(\tau \to \mu v v) = 17.4\%$
 - BR($\tau \rightarrow \pi v$) = 10.8%
 - BR($\tau \rightarrow \rho v$) = 25.5%
 - Total = 71.5%

• The total energy from neutral clusters not associated with either *B* mesons is **calibrated using 3 separate control samples** to correct *BB* backgrounds, signal with *t* leptonic modes and signal with *t* hadronic modes

 The total energy from neutral clusters not associated with either *B* mesons is calibrated using 3 separate control samples to correct *BB* backgrounds, signal with *r* leptonic modes and signal with *r* hadronic modes

- The branching fraction is extracted from 2D fit of the cluster energy and the event squared missing mass —
- Simultaneous binned maximum likelihood fit of all 4 signal *t* decay channels

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = [1.24 \pm 0.41 (\text{stat.}) \pm 0.19 (\text{syst.})] \times 10^{-4}$$

- $\bullet \quad Significance \to 3.0\sigma$
 - Expected significance $\rightarrow 2.7\sigma$
- The measurement is limited by statistics
- The leading systematic uncertainties come from
 - The finite size of the simulated samples
 - The neutral cluster calibration
- The extracted value of $|V_{ub}|$ is compatible with the exclusive and inclusive averages

$$|V_{ub}|_{B^+ \to \tau^+ \nu_\tau} = [4.41^{+0.74}_{-0.89}] \times 10^{-3}$$

 $|V_{ub}|_{\text{excl.}} = (3.43 \pm 0.12) \times 10^{-3} |V_{ub}|_{\text{incl.}} = (4.06 \pm 0.16) \times 10^{-3}$

DESY.

R(D^(*)) MEASUREMENT AT BELLE II

R(D^())* measurement at Belle II

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

- Test lepton flavour universality by studying decays to heavy *t* leptons versus light *e*, *μ* leptons
 - An observation of lepton flavour universality violation would be a clear signature of non-SM couplings with the 3rd fermion generation
- Such ratios have been measured by BaBar, Belle, LHCb and now Belle II
- Long standing **discrepancy** currently standing at **3.1σ** for the combined value of *R*(*D*^(*))

R(D^(*)) measurement at Belle II Reconstruction

- The Belle II measurement is performed with *B*⁰ decays
- The Belle II measurement is performed by reconstructing tag-side *B* mesons in their semileptonic decay channels

 $\circ \quad B_{tag} \to D/D^* I v$

r are reconstructed in their leptonic decay channels

 $\circ \quad \tau \to I \lor V$

- **D** mesons on both sides are reconstructed through various decays to K^+ , K_s , π^+ , π^0
 - Tag side: 26 decay modes
 - Signal side: 13 decays modes

Preliminary

R(D^(*)) measurement at Belle II

- A BDT algorithm is used to separate the events in 3 classes
 - Semitauonic signal events
 - Semileptonic signal events
 - Background events
- Most discriminating input feature is cosθ_{BY}
- Each event is assigned a BDT score z_r, z_ρ, z_{bkg}
- The signal is extracted in a 2D
 binned template fit of z, and

$$z_{diff} = z_{l} - z_{bkg}$$

R(D^(*)) measurement at Belle II Results D^(*) T V

- The fit is performed over **4 separate channels**: D^+e^- , $D^+\mu^-$, $D^{*+}e^-$, $D^{*+}\mu^-$ and The measurement is statistically limited
- The leading systematic uncertainties are coming from
 - The finite size of the simulated samples Ο
 - The lepton identification efficiency and fake rate Ο corrections
- The addition of B^+ modes will improve the precision

$$\mathcal{R}(D^+) = 0.418 \pm 0.074 \text{ (stat)} \pm 0.051 \text{ (syst)}$$

 $\mathcal{R}(D^{*+}) = 0.306 \pm 0.034 \text{ (stat)} \pm 0.018 \text{ (syst)}$

 $D^{(*)} I v$

D** 1 v

• 3 very recent high-profile Belle II analyses were presented here

- Measurement of $|V_{cb}|$ via $B \rightarrow D I v$ decays
 - Competitive with previous measurements of $|V_{cb}|$ via $B \rightarrow D^* / v$ decays which are usually preferred because of a branching fraction about twice higher
- $B^+ \rightarrow \tau v$ branching fraction measurement
 - Competitive with previous measurements
 - Measurements of $|V_{\mu\nu}|$ with negligible theoretical uncertainty
- Combined $R(D^+)$ and $R(D^{*+})$ measurement
 - First Belle II result with semileptonic tagging method
 - First Belle II combined *R*(*D*)-*R*(*D**) measurement

Tagging methods

- At B-factories it is possible to reconstruct both *B* mesons coming from the $Y(4S) \rightarrow B_{sig}\overline{B}_{tag}$ decay
- Three possible tagging strategies
 - Inclusive tagging (untagged)
 - Only simple consistency selections are applied on the B_{tag}
 - Offers high efficiency for statistically limited measurements
 - Semileptonic tagging
 - Reconstruct the B_{tag} in its $B \rightarrow D/D^* I v$ decays
 - Relatively low efficiency but more kinematically constrained events
 - Hadronic tagging

DESY.

- Reconstruct the B_{tag} in its hadronic decays in a total of O(10,000) channels
- Very low efficiency but precise reconstruction of the full event
- Particularly useful for measurements with undetected particles and/or inclusive systems

$B \rightarrow X_c \ I \ v \ decays$

DESY.

- The sum of branching fractions of semileptonic *B* decays to *D*, *D*^{*} and *D*^{**} doesn't match the measured inclusive $B \rightarrow X_c / v$ branching fraction
- To fill the gap, unmeasured decays are added referred to as gap modes $\circ B \rightarrow D^{(*)} \eta I v$

$B \rightarrow DIv$ measurement at Belle II BCL expansion BCL expansion: PRD 79, 013008 (2009)

$$r = M_D/M_B$$
 $\mathcal{G}^2(w) = \frac{4r}{(1+r)^2} f_+^2(w)$ $f_0(w_{\max}) = f_+(w_{\max})$

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/M_{+}^{2}} \sum_{k=0}^{N-1} a_{k} \left[z^{k} - (-1)^{k-N} \frac{k}{N} z^{N} \right] \qquad f_{0}\left(q^{2}\right) = \frac{1}{1 - q^{2}/M_{0}^{2}} \sum_{k=0}^{N-1} b_{k} z^{k}$$

a_0^+	0.8959(92)	1	0.2	26 -0.38	0.95	0.51
a_1^+	-8.03(15)]	1 0.17	0.33	0.86
a_2^+	49.3(31)			1	-0.31	0.16
a_{0}^{0}	0.7813(73)				1	0.47
a_1^0	-3.38(15)					1

Measured parameters of the N = 3 BCL expansion

$B \rightarrow D I v$ measurement at Belle II Systematics budget

	Uncertainty [%]
Statistical uncertainty	0.9
MC Stat. Error	0.5
N_{bb}	0.5
f_{00}/f_{+-}	0.1
f_{B}	0.3
$\mathcal{B}(D \to K\pi(\pi))$	0.3
Selection	0.5
$\mathcal{B}(B \to X_c \ell \nu)$	0.3
Lepton identification	0.2
Kaon identification	0.5
Tracking efficiency	0.3
Signal PDF	0.4
$B \to D^* \ell \nu$ form factor	0.1
w background modelling	0.5
Background reweighing	0.3
$ au_{B^{0/\pm}}$	0.1
Total Systematic	1.5
Lattice QCD inputs	1.2
Long-distance QED	0.4
Total theory	1.3
Total	2.1

Fractional contributions to the total relative uncertainty of $|V_{cb}|$

$|V_{cb}| = (39.2 \pm 0.4 \text{ (stat.)} \pm 0.6 \text{ (syst.)} \pm 0.5 \text{ (theo.)}) \times 10^{-3}$

$B \rightarrow D I v$ measurement at Belle II Electroweak and QED corrections

- Short-distance electroweak corrections are well understood
 - $\eta_{EW} = (1.0066 \pm 0.0002) [Nucl. Phys. B 196, 83 (1982)]$

• Long-distance QED corrections arise from photon exchange between the *D* meson and the charged lepton (Coulomb correction)

•
$$\delta_{Coulomb} = (1 + \alpha \pi) = 1.023 [Phys. Rev. D 41, 1736 (1990)]$$

• A nuisance parameter θ is introduced to take into account the isospin-breaking effect of the Coulomb correction which modifies the *B* lifetime ratio

 $\quad \quad \tau_{0+} \to \tau_{0+}(1 + \alpha \pi \theta)$

• This is an important information that cannot be accessed in $B \rightarrow D^* I v$ measurements where the D^* is usually reconstructed via $D^* (\rightarrow D^0 \pi^+)$

$B \rightarrow \tau v$ measurement at Belle II Calibration and validation

 $w_{\rm cont.}$

 $\mathcal{S}_{ ext{cont.}}$

- Continuum calibration
 - Use a sample of data collected 60 MeV below the *Y(4S)* resonance
 - Train a BDT to distinguish simulated and data events
 - The classifier response $S_{cont.}$ is used to reweight continuum events
- The data-simulation disagreement in E^{extra} variable is known to originate from an incorrect modelling of the extra neutral cluster multiplicity n_{vextra}
- 3 control samples are used to extract calibration factors in bins of n_{yextra}
 - Extra track sample $\rightarrow B\overline{B}$ background
 - $\circ \quad B \to D^* \, I \, v \text{ sample} \to \text{signal } \tau \to I \, v \, v$
 - Double tag sample \rightarrow signal $\tau \rightarrow h v$

$B \rightarrow \tau v$ measurement at Belle II Systematics budget

Source	Syst.
Simulation statistics	13.3%
Fit variables PDF corrections	5.5%
Decays branching fractions in MC	4.1%
Tag B^- reconstruction efficiency	2.2%
Continuum reweighting	1.9%
π^0 reconstruction efficiency	0.9%
Continuum normalization	0.7%
Particle identification	0.6%
Number of produced $\Upsilon(4S)$	1.5%
Fraction of B^+B^- pairs	2.1%
Tracking efficiency	0.2%
Total	15.5%

Fractional contributions to the total relative systematic uncertainty of the $B \rightarrow \tau v$ branching fraction

R(D^(*)) measurement at Belle II D decay modes

Decay mode	tag side	signal side
$D^0 \to K^- \pi^+ \pi^0$	~	~
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	\checkmark	\checkmark
$D^0 \to K^- K^+ K_S^0$	\checkmark	\checkmark
$D^0 \to K^- K^+$	\checkmark	\checkmark
$D^0 \to K^- \pi^+$	~	\checkmark
$D^0 ightarrow K^0_S \pi^+ \pi^-$	1	\checkmark
$D^0 \rightarrow \pi^- \pi^+$	\checkmark	\checkmark
$D^0 \to K^- \pi^+ \pi^0 \pi^0$	\checkmark	-
$D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$	\checkmark	-
$D^0 \rightarrow \pi^- \pi^+ \pi^0$	\checkmark	-
$D_0^0 \rightarrow \pi^- \pi^- \pi^+ \pi^0$	~	-
$D_0^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$	1	-
$D^0 \rightarrow K^0_S \pi^0$	~	-
$D_0^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$	\checkmark	-
$\underline{D^0 \to K^- K^+ \pi^0}$	1	-
$D^+ \rightarrow K^- \pi^+ \pi^+$	~	\checkmark
$D^+_{\pm} \rightarrow K^0_S \pi^+ \pi^0_{\pm}$	~	\checkmark
$D^+ \rightarrow K^0_S \pi^+ \pi^+ \pi^-$	\checkmark	\checkmark
$D^+ \rightarrow K^0_S \pi^+$	\checkmark	\checkmark
$D^+ \rightarrow K^- K^+ \pi^+$	\checkmark	~
$D^+_+ \rightarrow K^0_S K^+_+$	-	~
$D^+ \rightarrow \pi^+ \pi^-$	~	-
$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	~	-
$D' \rightarrow \pi' \pi' \pi$ $\pi^+ + \pi^- 0$	~	-
$D' \rightarrow \pi' \pi' \pi \pi^{\circ}$	~	-
$D^+ \rightarrow K^+ K_S^- K_S^-$ $D^0 \rightarrow K^- K_S^+ + 0$	~	-
$D^{*} \rightarrow K K^{*} \pi^{*} \pi^{*}$	V	-

R(D^(*)) measurement at Belle II Systematics budget

Fractional contributions to the total (relative) uncertainty of R(D) and $R(D^*)$

Systematic Uncertainty	$\Delta \mathcal{R}(D^+)$	$\Delta \mathcal{R}(D^{*+})$
Additive		
MC sample size	0.033 (8.0%)	0.014 (4.7%)
$\operatorname{Gap} \mathcal{B}$	0.027 (6.4%)	0.001 (0.1%)
LID efficiency (μ)	0.022 (5.1%)	0.001 (0.1%)
Fake rates (e)	0.012 (2.9%)	0.003 (0.9%)
Continuum fraction	0.002 (0.6%)	0.001 (0.2%)
Gap FFs	0.002~(0.5%)	0.001 (0.2%)
$\overline{B} \to D^{(*)} \ell \bar{\nu}_{\ell} \ / \ \tau \bar{\nu}_{\tau} \ \mathrm{FFs}$	0.002~(0.5%)	0.002 (0.7%
$\mathcal{B}(\overline{B} \to D^{**} \ell \bar{\nu}_{\ell})$	0.002 (0.5%)	0.001 (0.1%
$\overline{B} \to D^{**} \ell \bar{\nu}_{\ell}$ FFs	0.001 (0.3%)	0.001 (0.2%
BDT modeling	0.001 (0.3%)	0.001 (0.2%
LID efficiency (e)	0.001 (0.1%)	0.001 (0.2%
Fake rates (μ)	0.001 (0.1%)	0.001 (0.1%
$\pi^{\pm} \text{ from } D^* \to D\pi$	0.003 (0.7%)	0.001 (0.1%
Total Additive Uncertainty	0.050 (12%)	0.015 (4.8%
Multiplicative		
$\overline{B} \to D^{(*)} \ell \bar{\nu}_{\ell} \ / \ \tau \bar{\nu}_{\tau} \ \mathrm{FFs}$	0.009 (2.1%)	0.011 (3.5%
MC sample size	0.007 (1.7%)	0.004 (1.2%
LID efficiency (e)	0.001 (0.2%)	0.001 (0.2%
${\cal B}(au^- o \ell^- \overline{ u}_\ell u_ au)$	0.001 (0.2%)	0.001 (0.2%
LID efficiency (μ)	0.001 (0.1%)	0.001 (0.1%
Tracking efficiency	0.001 (0.1%)	0.001 (0.1%
$\pi^{\pm} \text{ from } D^* \to D\pi$	- (-)	0.001 (0.2%
Total Multiplicative Uncertainty	y 0.012 (2.8%)	0.011 (3.7%
Total Syst. Uncertainty	0.051~(12%)	0.018 (6.2%
Total Stat. Uncertainty	0.074 (18%)	0.034 (11%)
Total Uncertainty	0.090 (22%)	0.039 (13%)