Controlling hadronic matrix elements in rare b-decays

Moriond EW - 23/03/2025

Méril Reboud

Based on 2206.03797, 2305.06301 [Gubernari, MR, van Dyk, Virto] and ongoing projects

Laboratoire de Physique des 2 Infinis

Rare b-decays

- LHCb and CMS measure b FCNC with an **unprecedented precision**:
 - ▷ Mesonic processes $B \rightarrow K^{(*)}\ell\ell$, $B_s \rightarrow \varphi\ell\ell$
 - ▷ Baryonic processes $\Lambda_b \rightarrow \Lambda^{(*)} \ell \ell$
 - ▷ $b \rightarrow d$ transitions
- Large tensions are still observed
 - ▷ > 4 σ in B → Kµµ and B_s → ϕ µµ...
- Hadronic matrix elements dominate the theory uncertainties
 - This talk: (How) can we reduce uncertainties?

[Gubernari, MR, van Dyk, Virto, '22; LHCb '14; Babar '12; Belle '19; CMS '24]

Weak Effective Theory

These processes take place at a scale m_b < m_w, m_t

• Allows for a model independent interpretation of the anomalies

$$\mathcal{H}(b \to s\ell\ell) = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

$$\mathcal{O}_{9(10)} = \frac{e^2}{16\pi^2} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\ell} \gamma^\mu (\gamma_5) \ell \right)$$
$$\mathcal{O}_7 = \frac{e}{16\pi^2} \left(\bar{s}_L \sigma_{\mu\nu} b_R \right) F^{\mu\nu}$$

• Avoids the appearance of large logarithm in the calculations of observables

QCD in $b \rightarrow sll$

$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_{9} \mp C_{10})\mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \left[C_{7}\mathcal{F}_{\lambda}^{T}(q^{2}) \right] \right\}$$

$$F \to \mathsf{K}^{(*)} \mu\mu / \text{ee}$$

$$\mathsf{Local form-factors,}$$

$$\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s}\gamma_{\mu}b_{L} | \bar{B}(q+k) \rangle$$

$$\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s}\gamma_{\mu}b_{L} | \bar{B}(q+k) \rangle$$

• $\Lambda_b \rightarrow \Lambda^{(*)} \mu \mu / ee$

• B

• B

QCD in $b \rightarrow s\ell\ell$

 \rightarrow Main contributions: the "charm-loops"

$\mathcal{O}_{2(1)}^c = \left(\bar{s}_L \gamma_\mu(T^a) c_L\right) \left(\bar{c}_L \gamma^\mu(T^a) b_L\right)$

I. Local Form Factors

Local form factors

- Conceptually easy, but still a dominant source of uncertainties
- 2 **complementary** approaches
 - Light-cone sum rules \rightarrow most feasible at small q^2
 - Lengthy calculations
 - Requires experimental inputs (LCDAs)
 - Large (irreducible?) systematic uncertainties

[Gubernari, MR, van Dyk, Virto, '23; Horgan, Liu, Meinel, Wingate '15; Gubernari, Kokulu, van Dyk '18]

Local form factors

- Conceptually easy, but still a dominant source of uncertainties
- 2 **complementary** approaches
 - Light-cone sum rules \rightarrow most feasible at small q^2
 - Lattice QCD \rightarrow most feasible at large q²
 - CPU very expensive
 - Can now also probe small q² region
 - Difficulties with unstable mesons ρ , K^{*}, D^{*}, Λ^* ...

[Gubernari, MR, van Dyk, Virto, '23; Horgan, Liu, Meinel, Wingate '15; Gubernari, Kokulu, van Dyk '18]

Local form factors

- Conceptually easy, but still a dominant source of uncertainties
- 2 **complementary** approaches
 - Light-cone sum rules \rightarrow most feasible at small q^2
 - Lattice QCD \rightarrow most feasible at large q^2
- Interpolation/Extrapolation requires a parametrization

 \rightarrow Adapt the parametrization to the **analytic properties** of the form factors

[Gubernari, MR, van Dyk, Virto, '23; Horgan, Liu, Meinel, Wingate '15; Gubernari, Kokulu, van Dyk '18]

Form Factor Properties

$$\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle$$

Analytic properties of the form factors:

- Pole due to **bs bound state**
- **Branch cut** due to on-shell BM production

Form Factor Properties

 $\mathcal{F}_{\mu}(k,q) = \langle \bar{M}(k) | \bar{s} \gamma_{\mu} b_L | \bar{B}(q+k) \rangle$

Form Factor Parametrization

Dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

$$\Pi^{\mu\nu}_{\Gamma}(q) \equiv i \int d^4x \, e^{iq \cdot x} \, \langle 0 | \mathcal{T} \left\{ J^{\mu}_{\Gamma}(x) J^{\dagger,\nu}_{\Gamma}(0) \right\} | 0 \rangle$$

1) Partonic calculation

Also done on the lattice for $b \rightarrow c \text{ now}!$ [Martinelli et al '21; Harrison '24]

Dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

$$\Pi^{\mu\nu}_{\Gamma}(q) \equiv i \int d^4x \, e^{iq \cdot x} \, \langle 0 | \mathcal{T} \left\{ J^{\mu}_{\Gamma}(x) J^{\dagger,\nu}_{\Gamma}(0) \right\} | 0 \rangle$$

2) Relation to form factors

Sum over all the \overline{sb} states: \overline{B}_s , $\overline{B}K$, $\overline{B}K^*$, $\overline{B}K\pi$, baryons...

Dispersive bounds

• Main idea: Compute the inclusive $e^+e^- \rightarrow \bar{b}s$ cross-section and relate it to the form factors [Bharucha, Feldmann, Wick '10]

• Assuming global quark-hadron duality we have

$$\chi_{\Gamma}^{(\lambda)}|_{OPE} = \chi_{\Gamma}^{(\lambda)}|_{1pt} + \chi_{\Gamma}^{(\lambda)}|_{\bar{B}K} + \chi_{\Gamma}^{(\lambda)}|_{\bar{B}K^*} + \chi_{\Gamma}^{(\lambda)}|_{\bar{B}_{s}\phi} + \dots$$
Known terms
Sum of positive quantities

Further contributions such as $B \rightarrow K\pi\pi$ or $\Lambda_b \rightarrow \Lambda^{(*)}$.

Any new terms strengthens the bound.

Results for mesonic form-factors

Global fit of $B \to K, \, B \to K^*$ and $B_s \to \varphi$

- Fits are very good already at N = 2 (p-values > 77%)
- LCSR and LQCD combine nicely but still dominate the uncertainties
- Progresses in LQCD will gradually replace LCSR

II. Beyond narrow-width approximation

Caveat: finite width effects in $B \rightarrow K^*$

- $\Gamma_{K^*} / M_{K^*} \sim 5\%$ is not very small
- Finite width effects have to be accounted for in the LQCD and LCSR calculations
 - Universal 20% correction to the observables [Descotes-Genon, Khodjamirian, Virto '19]
 - Computable in LQCD [Leskovec '24]
- B → Kπµµ decays also have a large S-wave component [LHCb '16]
 - LCSR inputs for the S-wave are now available [Descotes-Genon, Khodjamirian, Virto, Vos '23]
- Need for a generic parametrization for $B \rightarrow K\pi$ form factors [Gustafson, Herren *et al* '23, Herren, Kubis *et al* '25]

[Descotes-Genon, Khodjamirian, Virto '19]

III. Non Local Form Factors

1) The contribution is **dominated by the charm loops** due to O_{1c} and O_{2c}

- 1) The contribution is dominated by the charm loops due to O_{1c} and O_{2c}
- 2) The contribution **mimics new physics** by shifting C₉
 - \rightarrow Pure data-driven approaches can't resolve SM and NP [Ciuchini et al '21, '22]

- 1) The contribution is dominated by the charm loops due to O_{1c} and O_{2c}
- 2) The contribution mimics new physics by shifting C₉
- 3) Moriond 2025 status:
 - ▷ No visible q² dependence for NP [Bordone, Isidori, Maechler, Tinari '24]

- 1) The contribution is dominated by the charm loops due to O_{1c} and O_{2c}
- 2) The contribution mimics new physics by shifting C₉
- 3) Moriond 2025 status:
 - ▷ No visible q² dependence for NP [Bordone, Isidori, Maechler, Tinari '24]
 - Assuming a simple analytic structure, charm loops are small [Gubernari, MR, van Dyk, Virto '22, LHCb '24]

- 1) The contribution is dominated by the charm loops due to O_{1c} and O_{2c}
- 2) The contribution **mimics new physics** by shifting C₉
- 3) Moriond 2025 status:
 - ▷ No visible q² dependence for NP [Bordone, Isidori, Maechler, Tinari '24]
 - Assuming a simple analytic structure, charm loops are small [Gubernari, MR, van Dyk, Virto '22, LHCb '24]
 - Mesonic calculations hint at possible rescattering effects [Ciuchini *et al* '22, Mutke, Hoferichter, Kubis '24; Isidori, Polonsky, Tinari '24]

- 1) The contribution is dominated by the charm loops due to O_{1c} and O_{2c}
- 2) The contribution **mimics new physics** by shifting C₉
- 3) Moriond 2025 status:
 - No visible q² dependence for NP [Bordone, Isidori, Maechler, Tinari '24]
 - Assuming a simple analytic structure, charm loops are small [Gubernari, MR, van Dyk, Virto '22, LHCb '24]
 - Mesonic calculations hint at possible rescattering effects [Ciuchini et al '22, Mukte, Hoferichter, Kubis '24; Isidori, Polonsky, Tinari '24]
 - Analytic parametrizations can, in principle, account for anomalous thresholds [Gopal, Gubernari '24]

Conclusion

- FCNC are notoriously hard to predict
 - Local form-factors are only well-known for a couple of transitions
 - The size of the charm loops is still under investigation
- Recent progresses on lattice QCD, specific calculations and analytic constraints allow for large numerical analyses that benefit from unitarity constraints
- **Upcoming data** will be crucial to (1) validate these approaches and (2) further constrain the matrix elements

Back-up

Simple case: $B \rightarrow K$

- The branch cut starts at the pair production threshold (neglecting B_sπ)
- The monomial z^k are **orthogonal** on the unit circle $\mathcal{F}^{B \to K} = \frac{1}{\sum_{k=1}^{N} \sum_{k=1}^{N} \alpha_k z^k}$

Known functions

$$\frac{\mathcal{P}(z)\phi(z)}{\chi_{\Gamma}^{(\lambda)}}\sum_{k=0}^{N}\alpha_{k}z^{n}$$
$$\chi_{\Gamma}^{(\lambda)}|_{\bar{B}K} = \sum_{k=0}^{N}|\alpha_{k}|^{2}$$

Less simple case, e.g. $\Lambda_b \rightarrow \Lambda$

- The first branch cut (BK) starts **before** the pair production threshold
- Introduce orthonormal polynomials of the arc of the unit circle

$$\mathcal{F}^{\Lambda_b \to \Lambda} = rac{1}{\mathcal{P}(z)\phi(z)} \sum_{k=0}^N lpha_k p_k(z)$$

• (Or still expand in z and deal with a more complicated bounds [Flynn, Jüttner, Tsang '23])

Local form factors fit

- With this framework we perform a **combined fit** of $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ LCSR and lattice QCD inputs:
 - $B \rightarrow K:$
 - [HPQCD '13 and '22; FNAL/MILC '17]
 - ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit

[Gubernari, MR, van Dyk, Virto '23]

30

- $B \rightarrow K^*:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
- $B_{s} \rightarrow \phi:$
 - [Horgan, Liu, Meinel, Wingate '15]
 - [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Adding $\Lambda_b \rightarrow \Lambda^{(*)}$ form factors is possible and desirable

Analyticity properties of H_{μ}

- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4m_D^2$

More involved analytic structure?

• $M_B > M_{D^*} + M_{Ds} \rightarrow$ The function $H_{\lambda}(p^2,q^2)$ has a branch cut in p^2 and the physical decay takes place on this branch cut: H_{λ} is complex-valued!

- Triangle diagrams are known to create anomalous branch cuts in q² [e.g. Lucha, Melikhov, Simula '06] → Not clear if it happen here (no Lagrangian nor power counting)
- Models *implementing* these diagrams find their contribution to be O(10%) [Isidori, Polonsky, Tinari '24; Mutke, Hoferichte, Kubis '24]

GRvDV parametrization

 Nonlocal form factors are expanded using orthonormal polynomials of the arc of the unit circle

[Gubernari, MR, van Dyk, Virto '22]:

$$\mathcal{H}_{\lambda}(z) = \frac{1}{\phi(z)\mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda,k} p_k(z)$$

- The coefficients respect a simple bound [Gubernari, van Dyk, Virto '20]: $\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^2 + \sum_{\lambda = \perp, \parallel, 0} \left[2 \left| a_{\lambda,n}^{B \to K^*} \right|^2 + \left| a_{\lambda,n}^{B_s \to \phi} \right|^2 \right] \right\} < 1$
- The series converges on an arc of the unit circle but the convergence is slow and useless in practice

$$z(s) = \frac{\sqrt{4m_D^2 - s} - \sqrt{4m_D^2 - s_0}}{\sqrt{4m_D^2 - s} + \sqrt{4m_D^2 - s_0}}$$

Theory inputs

 \mathcal{H}_{λ} can be calculated in **two kinematics regions**:

- Local OPE $|q|^2 \ge m_b^2$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^2 \ll 4m_c^2$ [Khodjamirian, Mannel, Pivovarov, Wang '10]

Parametrization of the charm loop

- Still focusing on $B \rightarrow K$, $B \rightarrow K^*$ and $B_s \rightarrow \phi$ Inputs:
 - 4 theory point at negative q² from the light cone
 OPE
 - Experimental results at the J/ ψ (we keep ψ (2S) for future work)
- Use an under-constrained fit (N = 5) and allows for saturation of the dispersive bound
 - → The uncertainties are **truncation order independent**, increasing the expansion order does not change their size
 - \rightarrow All p-values are larger than 11%

Confrontation with data

- This approach of the non-local form factors **does not** solve the "B anomalies".
- In this approach, the greatest source of theoretical uncertainty now comes from local form factors.

8

Experimental results:

[Babar: 1204.3933; Belle: 1908.01848, 1904.02440: ATLAS: 1805.04000. CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241,

EOS v1.0.2

2

 $q^2 \,[{\rm GeV}^2]$

8

36

EOS v1.0.2

2

 $q^2 \,[{\rm GeV}^2]$

 $q^2 \,[{\rm GeV}^2]$

 $\times 10^{-5}$

5

 $\frac{d\mathcal{B}(B\to K\mu\mu)}{dq^2} \left[\text{GeV} \right]$

 $\mathcal{B}(B \to KJ/\psi)$

EOS v1.0.6

2

0.0