Flavour Changing Neutral Current decays at LHCb

Carla Marin <u>carla.marin@cern.ch</u> on behalf of the LHCb collaboration Moriond EW 2025

UNIVERSITAT DE BARCELONA

European Research Council Established by the European Commission

Content

- Introduction
- Angular analyses:
 - $\circ \quad \text{Analysis of } \Lambda_b \to p K \mu^* \mu^- \text{ decays}$
 - Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \rightarrow K^* \mu^+ \mu^-$ decay
 - Angular analyses with electrons
- Lepton Flavour Universality (LFU) tests:
 - Test of Lepton Flavour Universality with $B_s \rightarrow \Phi l^+ l^-$ decays
 - \circ Test of Lepton Flavour Universality with $B^{\bar{+}} \to K^{+}\pi^{+}\pi^{-}l^{+}l^{-}$
 - Measurement of the branching fraction ratio R_{κ} at large dilepton invariant mass

See also A. Scarabotto's talk on lepton flavour violation, rare charm & strange decays

Flavour Changing Neutral Currents (FCNC)

 Only at loop level in SM → sensitive to effects of New Physics (NP) in the loops and access to larger scales than direct searches

 $V_{\rm CKM} =$

- LHCb: tests of couplings to 3rd generation b-quarks in b \rightarrow sll decays
- b \rightarrow sll decays suppressed by smallness of $V_{tb}V_{ts}$

FCNC observables

Complementary sensitivity to NP in:

- Leptonic, semileptonic and radiative decays
 - semileptonic: different $q^2 = (m_{\parallel})^2$ regions
- different observables:
 - Branching fractions (BF): predictions affected by hadronic uncertainties
 - Angular observables: first-order uncertainty cancellations
 - Ratios of BF: large uncertainty cancellation

$$\begin{array}{l} H_{eff} \propto V_{tb}V_{ts}^* \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right) & \mathsf{C}_i = \mathsf{Wilson \ coefficients} \\ \hline O_7^{(')} \propto \left(\bar{s} \sigma_{\mu\nu} P_{R(L)} b \right) F^{\mu\nu} & O_S^{(')} \propto \left(\bar{s} P_{L(R)} b \right) (\bar{l} \gamma_{\mu} l) \\ O_9^{(')} \propto \left(\bar{s} \gamma_{\mu} P_{L(R)} b \right) (\bar{l} \gamma_{\mu} l) & O_S^{(')} \propto \left(\bar{s} P_{L(R)} b \right) (\bar{l} l) \\ O_{10}^{(')} \propto \left(\bar{s} \gamma_{\mu} P_{L(R)} b \right) (\bar{l} \gamma_{\mu} \gamma_5 l) & O_P^{(')} \propto \left(\bar{s} P_{L(R)} b \right) (\bar{l} \gamma_5 l) \end{array}$$

LHCb: Large Hadron Collider Beauty experiment

Run 2 (2015-2018) ~ 6 fb⁻¹

 $\Delta p/p = 0.5 - 1.0\%$ $\Delta IP = (15 + 29/p_T[GeV]) \mu m$

 $\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{(E[GeV])}$

Electron ID ~90% for ~5% $e \rightarrow h$ mis-id probability

Kaon ID ~ 95% for ~ 5% $\pi \rightarrow$ K mis-id probability

Muon ID ~ 97%

for 1-3% $\pi{\rightarrow}\mu$ mis-id probability

Int.J.Mod.Phys.A30,1530022(2015)

$b \rightarrow sll$ anomalies

Hints for deviations wrt SM in $b \rightarrow s\mu^+\mu^-$ BR and angular observables. A lot of interest due to coherence and combined significance.

Open question: NP (in C_9/C_{10}) or non-local SM hadronic effects, eg charm-loop?

Analysis of $\Lambda_{b} \rightarrow pK\mu^{+}\mu^{-}$ decays

<u>IHEP 12 (2024) 147</u>

Strategy

Measurement of $\Lambda_b \rightarrow pK\mu^+\mu^-$ BF and angular coefficients in q² and m(pK) bins

- q^2 : 0.10 17.5 GeV², excluding Φ and ψ (2S); J/ ψ as control
- m(pK): 1.4359 5.41 GeV, including many $\Lambda \rightarrow pK$ resonances with different J^P 5-dimensional decay rate:

$$\frac{\mathrm{d}^{5}\Gamma}{\mathrm{d}\boldsymbol{\Phi}} = \frac{3}{8\pi} \sum_{i=1}^{46} K_{i}(q^{2}, m_{pK}^{2}) f_{i}(\boldsymbol{\Omega}) \quad \Phi = (\mathsf{q}^{2}, \mathsf{m}_{\mathsf{pK}'} \cos\theta_{\mathsf{\mu}'} \cos\theta_{\mathsf{p}'} \boldsymbol{\Phi})$$

- treat Λ_{b} as unpolarised and include $J_{\Lambda} \leq 5/2 \Rightarrow 46$ angular terms
- differential BF wrt J/ ψ mode
- K_i angular coefficients from moments of angular distribution:

$$\overline{K}_i = \frac{1}{N} \sum_{\text{event } n} w(\mathbf{\Phi}_n) f_i(\mathbf{\Omega}_n)$$

ω: detector efficiency &background subtraction

Overall compatible with SM. Better understanding of hadronic system needed for detailed interpretation.

Differential BF in (q², m_{pK}) bins

- limited by $BF(\Lambda_b \rightarrow pK J/\psi)$ knowledge
- first m_{pK} bin compatible with $\Lambda_b \rightarrow \Lambda(1520) \mu^+ \mu^-$
- q² shape not compatible with SM quark-model
- m_{pK} shape similar to $\Lambda_b \rightarrow pK J/\psi$ and $\Lambda_b \rightarrow pK\gamma$, consistent with available phase-space

<u>JHEP 12 (2024) 147</u>

Overall compatible with SM. Better understanding of hadronic system needed for detailed interpretation.

Differential BF in (q², m_{pK}) bins

- limited by $BF(\Lambda_b \rightarrow pK J/\psi)$ knowledge
- first m_{pK} bin compatible with $\Lambda_b \rightarrow \Lambda(1520) \mu^+\mu^-$
- q² shape not compatible with SM quark-model
- m_{pK} shape similar to $\Lambda_b \rightarrow pK J/\psi$ and $\Lambda_b \rightarrow pK\gamma$, consistent with available phase-space

Complete set of angular observables:

- A^{μ}_{FB} : sign-change low and high $q^2 \rightarrow$ vector and axial-vector interference
- large $A^{p}_{FB} \rightarrow$ interference Λ states
- tabulated values in q^2 and m_{pK} provided

Comprehensive analysis of local and nonlocal amplitudes in the $B^0 \to K^* \mu^+ \mu^-$ decay

<u>JHEP 09 (2024) 026</u>

New approach to $B^0 \to K^* \mu^+ \mu^-$ angular analysis

Previously: exclude J/ ψ and ψ (2S); effect on rare mode from theory estimates

Here: fit full q² and measure local and nonlocal amplitudes from data

- acceptance & resolution from MC
- background fraction from mass fit

Extraction of local and nonlocal amplitudes

Fit 4-dimensional decay rate, with 796 < m(K π) < 996 MeV:

$$\frac{\mathrm{d}^4 \,\widetilde{\Gamma}^{(B^0 \to K^+ \pi^- \mu^+ \mu^-)}}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \sum_i \,\widetilde{J}_i^{(q^2)} f_i(\cos\theta_\ell, \cos\theta_K, \phi) G_i$$

• two-particle $\{D\overline{D}, D^*\overline{D}, D^*\overline{D}^*\}$

$B^0 \rightarrow K^* \mu^+ \mu^-$ results

- Measure contribution one- and two-particle nonlocal amplitudes across q²
- Measurement of $C_{9}^{(\prime)}$ and $C_{10}^{(\prime)}$ Wilson coefficients: still 2.1 σ deviation wrt SM in C_{9}
- Postfit local form factors compatible with priors, but results sensitive to priors → improved calculations needed
- First measurement of $C_{9\tau}$ from $b \rightarrow s\tau^{+}\tau^{-}, \tau^{+}\tau^{-} \rightarrow \gamma^{*} \rightarrow \mu^{+}\mu^{-}: |C_{9\tau}| < 500$ at 90% CL

W	ilson Coefficient results
\mathcal{C}_9	$3.56 \pm 0.28 \pm 0.18$
\mathcal{C}_{10}	$-4.02 \pm 0.18 \pm 0.16$
\mathcal{C}'_9	$0.28 \pm 0.41 \pm 0.12$
$\mathcal{C}_{10}^{\prime}$	$-0.09 \pm 0.21 \pm 0.06$
$\mathcal{C}_{9 au}$	$(-1.0\pm 2.6\pm 1.0)\times 10^2$

Angular analyses with electrons

Allow Lepton Universality tests in angular coefficients and give access to very low q^2 testing C_7

See M. Hartman and L. Paolucci YSF talks this afternoon for recent results on $B^0 \rightarrow K^*e^+e^-$ and $B_s \rightarrow \Phi e^+e^-$

Lepton Flavour Universality tests

Leptons of different species couple identically to electroweak bosons in SM Accidental symmetry \rightarrow not necessarily realised in BSM scenarios

Lepton Flavour Universality (LFU) tests

Measure ratio of same b \rightarrow sll process with muons and electrons in final state: Hadronic uncertainties cancel in ratio \rightarrow very clean theory prediction

$$R_H \equiv \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

Experimentally:

samples

Challenges:

- e and μ behave very differently
- hard to estimate efficiencies \Rightarrow double-ratio wrt B \rightarrow H J/ ψ control modes

LFU with $B_c \rightarrow \phi l^+ l^-$ decays

First LFU test in B_s system:

- same strategy as previous LFU tests
- low background thanks to narrow Φ state \rightarrow include high q^2 for first time at LHCb
 - more challenging bkgs at high $q^2 \rightarrow$ dedicated BDT and fit model Ο

LFU with $B_{s} \rightarrow \phi l^{+}l^{-}$ decays

Results:

- first observation of $B_s \rightarrow \phi e^+e^-$ at low and central q^2 and measurement of BF
- LFU results compatible with previous measurements and SM
 - most precise measurement at high q²

$q^2 \left[\mathrm{GeV}^2\!/c^4 ight]$	R_{ϕ}^{-1}	$d\mathcal{B}(B^0_s \to \phi e^+ e^-)/dq^2 \ [10^{-7} \text{GeV}^{-2}c^4]$
$0.1 < q^2 < 1.1$	$1.57 {}^{+0.28}_{-0.25} \pm 0.05$	$1.38 {}^{+0.25}_{-0.22} \ \pm 0.04 \pm 0.19 \pm 0.06$
$1.1 < q^2 < 6.0$	$0.91^{+0.20}_{-0.19}\pm 0.05$	$0.26 \pm 0.06 \pm 0.01 \pm 0.01 \pm 0.01$
$15.0 < q^2 < 19.0$	$0.85^{+0.24}_{-0.23}\pm0.10$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02 \pm 0.02$

Statistically dominated BF systematics: internal, $dB(B_s \rightarrow \Phi \mu^+ \mu^-)/B(B_s \rightarrow \Phi J/\psi)$, $B(B_s \rightarrow \Phi J/\psi)$

LFU with $B^+ \rightarrow K^+ \pi^+ \pi^- l^+ l^-$ decays

First LFU test in this decay, following strategy of previous measurements

- inclusive measurement in 1.1 < m(K $\pi\pi$) < 2.4 GeV and 1.1 < q² < 7 GeV²
- first observation of $B^+ \rightarrow K\pi\pi e^+e^-$, exceeding 10 σ significance
- LFU results compatible with SM

$\mathbf{R}_{\mathbf{K}}$ at large dilepton invariant mass

 R_{κ} measurement at $q^2 > 14.3 \text{ GeV}^2$

- optimised selection and background studies for this q² region
- most precise LFU measurement above ψ (2S) region
 - **Results** compatible with SM $R_K(q^2 > 14.3 \text{ GeV}^2/c^4) = 1.08^{+0.11}_{-0.09} + 0.04_{-0.09}$ Preliminary Candidates / (10 MeV/ c^2) Candidates / (80 MeV/ c^2) 80 LHCb LHCb ➡ Data 9 fb⁻¹ Data 9 fb⁻¹ Total fit Total fit 60 $B^+ \rightarrow K^+ \mu^+ \mu^ B^+ \rightarrow K^+ e^+ e^ B^+ \rightarrow K^+ \psi(2S)(\mu^+ \mu^-)$ Mis-ID Combinatorial Part. Reco. Combinatorial 40 Preliminary 100 Preliminary 5200 5300 5400 5500 4500 5000 5500 6000 6500 5600 $m(K^+e^+e^-)$ [MeV/c²] $m(K^+ \mu^+ \mu^-)$ [MeV/ c^2]

Outlook

LHCb completing FCNC results with full Run 2 dataset, still statistically limited

Major upgrade for Run 3: >8 fb⁻¹ in 2024 with improved trigger efficiency. Expect even more in 2025 and aim to reach 300 fb⁻¹ in Run 5 with Upgrade 2.

Precision of $b \rightarrow sll$ decays will be hugely improved and precise study of more suppressed $b \rightarrow dll$ decays.

STAY TUNED!

Probing New Physics (NP) 1. Direct searches (LHC): limited by $E = mc^2$, no discovery so far \sqrt{s}

2. Precision measurements

- experimentally accessible
- suppressed processes \Rightarrow very sensitive to (small) NP effects
- precise predictions \Rightarrow smoking gun of NP

Flavour Changing Neutral Currents (FCNC)

generic

flavour violation

Coupling_{NP}(κ)

CKM-like

flavour violation

LHCb: Large Hadron Collider Beauty experiment

- Core physics: CPV and rare decays
- Much more: spectroscopy, QCD, heavy ions...

Distribution of produced b-quarks

<u>JINST 3 (2008) S08005</u>

All b-hadron species! [PRD100(2019)031102]

$$lacksymbol{\mathsf{B}}_{\mathsf{s}}{:}\quad rac{f_s}{f_d+f_u}=0.122\pm0.006$$

$$ullet \quad \wedge_{ ext{b}}: \quad rac{f_{\Lambda_b}}{f_d+f_u} = 0.259 \pm 0.018$$

and more: $\Xi_{b'} \Omega_{b'} B_{c'} B^* ...$

Total recorded luminosity ~9 fb⁻¹:

- Run 1 (2010-2012) ~ 3 fb⁻¹
- Run 2 (2015-2018) ~ 6 fb⁻¹

x2 b-quark production from 7 to 13 TeV pp collisions \rightarrow around x4 b-hadrons in Run 2

Angle definitions

(a) θ_K and θ_ℓ definitions for the B^0 decay

$\Lambda_b \rightarrow p K \mu^+ \mu^-$

- Unpolarised Λ_{b}
- J_{\lambda} <= 5/2

BF extraction wrt J/ ψ mode:

$\mathrm{d}^2\mathcal{B}(\Lambda^0_b o pK^-\mu^+\mu^-)$	$N_{\Lambda^0_b o pK^-\mu^+\mu^-} \mathcal{B}(\Lambda^0_b)$	$B_b^0 \to J/\psi p K^-) \mathcal{B}(J/\psi \to \mu^+ \mu^-)$
$\mathrm{d}q^2\mathrm{d}m_{pK}^2$	$= \frac{1}{N_{A_b^0 \to J/\psi pK^-}}$	$\Delta(q^2,m_{pK}^2)$
Efficiency mo	odel:	

$$\varepsilon(\Phi) = \sum_{hijkl} e_{hijkl} P_h(m'_{pK}) P_i(m'_{\mu\mu}) P_j(\cos\theta_p) P_k(\cos\theta_\mu) \cos(l\phi)$$

i	$f_i(\Omega)$	i	$f_i(\Omega)$
1	$\frac{1}{\sqrt{3}}P_0^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	24	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$
2	$P_0^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	25	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$
3	$\sqrt{\frac{5}{3}}P_0^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	26	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$
4	$P_1^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	27	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$
5	$\sqrt{3}P_1^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	28	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$
6	$\sqrt{5}P_1^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	29	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
7	$\sqrt{\frac{5}{3}}P_2^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	30	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
8	$\sqrt{5}P_2^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	31	$\frac{\frac{5}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi}{\frac{5}{3\sqrt{6}}P_2^1(\cos\theta_\mu)\sin\phi}$
9	$\frac{5}{\sqrt{3}}P_2^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	32	$\sqrt{\frac{5}{6}}P_2^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
10	$\sqrt{\frac{7}{3}}P_3^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	33	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
11	$\sqrt{7}P_3^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	34	$\frac{1}{2}\sqrt{\frac{7}{3}}P_3^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
12	$\sqrt{\frac{35}{3}}P_3^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	35	$\frac{1}{2}P_4^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
13	$\sqrt{3}P_4^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	36	$\frac{3}{2\sqrt{5}}P_4^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
14	$3P_4^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	37	$\frac{1}{3}\sqrt{\frac{11}{6}}P_5^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\sin\phi$
15	$\sqrt{15}P_4^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	38	$\sqrt{\frac{11}{30}}P_5^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\sin\phi$
16	$\sqrt{\frac{11}{3}}P_5^0(\cos\theta_p)P_0^0(\cos\theta_\mu)$	39	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
17	$\sqrt{11}P_5^0(\cos\theta_p)P_1^0(\cos\theta_\mu)$	40	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
18	$\sqrt{\frac{55}{3}}P_5^0(\cos\theta_p)P_2^0(\cos\theta_\mu)$	41	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
19	$\sqrt{\frac{5}{6}}P_1^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$	42	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\cos 2\phi$
20	$\sqrt{\frac{3}{2}}P_1^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$	43	$\frac{5}{12\sqrt{6}}P_2^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$
21	$\frac{5}{3\sqrt{6}}P_2^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$	44	$\frac{1}{12}\sqrt{\frac{7}{6}}P_3^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$
22	$\sqrt{\frac{5}{6}}P_2^1(\cos\theta_p)P_1^1(\cos\theta_\mu)\cos\phi$	45	$\frac{1}{12\sqrt{2}}P_4^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$
23	$\frac{1}{6}\sqrt{\frac{35}{3}}P_3^1(\cos\theta_p)P_2^1(\cos\theta_\mu)\cos\phi$	46	$\frac{1}{12}\sqrt{\frac{11}{42}}P_5^2(\cos\theta_p)P_2^2(\cos\theta_\mu)\sin 2\phi$

28

Angular observables

Range of observables sensitive to different WCs

$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \left.\frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2\mathrm{d}\vec{\Omega}}\right _{\mathrm{P}} =$	$\frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K \Big]$
	$+rac{1}{4}(1-F_{ m L})\sin^2 heta_K\cos2 heta_l$
	$-F_{\rm L}\cos^2\theta_K\cos 2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos 2\phi$
$B_d \rightarrow K^* \mu^+ \mu^-$	$+S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$
[Altmannshofer et al.]	$+\frac{4}{3}A_{\rm FB}\sin^2 heta_K\cos heta_l+S_7\sin2 heta_K\sin heta_l\sin\phi$
	$+S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi$

F₁: H longitudinal polarisation

A_{FB}: di-lepton forward-backward asymmetry

S_i: CP-averaged observables

"Clean" basis: cancellation of Form Factors at leading order [Descotes-Genon et al.]

$$P_5' = S_5 / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

$B^0 \rightarrow K^* \mu^+ \mu^-$: angular coefficients

 $J_{1s}(q^2) = \frac{2 + \beta_{\ell}^2}{4} \left(|\mathcal{A}_{\perp}^L|^2 + |\mathcal{A}_{\parallel}^L|^2 + |\mathcal{A}_{\perp}^R|^2 + |\mathcal{A}_{\parallel}^R|^2 \right) + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left(\mathcal{A}_{\perp}^L \mathcal{A}_{\perp}^{R*} + \mathcal{A}_{\parallel}^L \mathcal{A}_{\parallel}^{R*} \right),$ $J_{1c}(q^2) = |\mathcal{A}_0^L|^2 + |\mathcal{A}_0^R|^2 + \frac{4m_\ell^2}{q^2} \left(|\mathcal{A}_t|^2 + 2\operatorname{Re}\left(\mathcal{A}_0^L \mathcal{A}_0^{R*}\right) \right),$ $J_{2s}(q^2) = \frac{\beta_{\ell}^2}{4} \left(|\mathcal{A}_{\perp}^L|^2 + |\mathcal{A}_{\parallel}^L|^2 + |\mathcal{A}_{\perp}^R|^2 + |\mathcal{A}_{\parallel}^R|^2 \right),$ $J_{2c}(q^2) = -\beta_{\ell}^2 \left(|\mathcal{A}_0^L|^2 + |\mathcal{A}_0^R|^2 \right),$ $J_{3}(q^{2}) = \frac{\beta_{\ell}^{2}}{2} \left(|\mathcal{A}_{\perp}^{L}|^{2} - |\mathcal{A}_{\parallel}^{L}|^{2} + |\mathcal{A}_{\perp}^{R}|^{2} - |\mathcal{A}_{\parallel}^{R}|^{2} \right),$ $J_4(q^2) = -\frac{\beta_\ell^2}{\sqrt{2}} \operatorname{Re} \left(\mathcal{A}_0^L \mathcal{A}_{\parallel}^{L*} + \mathcal{A}_0^R \mathcal{A}_{\parallel}^{R*} \right),$ $J_5(q^2) = \sqrt{2}\beta_\ell \operatorname{Re}\left(\mathcal{A}_0^L \mathcal{A}_\perp^{L*} - \mathcal{A}_0^R \mathcal{A}_\perp^{R*}\right),\,$ $J_{6s}(q^2) = -2\beta_{\ell} \operatorname{Re} \left(\mathcal{A}_{\parallel}^L \mathcal{A}_{\perp}^{L*} - \mathcal{A}_{\parallel}^R \mathcal{A}_{\perp}^{R*} \right),$ $J_7(q^2) = -\sqrt{2}\beta_\ell \operatorname{Im} \left(\mathcal{A}_0^L \mathcal{A}_{\parallel}^{L*} - \mathcal{A}_0^R \mathcal{A}_{\parallel}^{R*} \right),$ $J_8(q^2) = \frac{\beta_\ell^2}{\sqrt{2}} \operatorname{Im} \left(\mathcal{A}_0^L \mathcal{A}_\perp^{L*} + \mathcal{A}_0^R \mathcal{A}_\perp^{R*} \right),$ $J_9(q^2) = -\beta_\ell^2 \operatorname{Im} \left(\mathcal{A}^{L*}_{\mathbb{H}} \mathcal{A}^L_{\mathbb{H}} + \mathcal{A}^{R*}_{\mathbb{H}} \mathcal{A}^R_{\mathbb{H}} \right),$

 $J_{1c}^{S'}(q^2) = \frac{1}{3} \left(\left(|\mathcal{A}_{00}^L|^2 + |\mathcal{A}_{00}^R|^2 \right) + \frac{4m_{\ell}^2}{a^2} 2\operatorname{Re}(\mathcal{A}_{00}^L \mathcal{A}_{00}^{R*}) \right),$ $J_{2c}^{S'}(q^2) = -\frac{1}{2}\beta_{\ell}^2 \left(|\mathcal{A}_{00}^L|^2 + |\mathcal{A}_{00}^R|^2 \right),$ $J_{1c}'(q^2) = \frac{2}{\sqrt{3}} \operatorname{Re} \left(\mathcal{A}_{00}^L \mathcal{A}_0^{L*} + \mathcal{A}_{00}^R \mathcal{A}_0^{R*} + \frac{4m_{\ell}^2}{a^2} \left(\mathcal{A}_{00}^L \mathcal{A}_0^{R*} + \mathcal{A}_0^L \mathcal{A}_{00}^{R*} \right) \right),$ $J_{2c}'(q^2) = -\frac{2}{\sqrt{2}}\beta_{\ell}^2 \operatorname{Re} \left(\mathcal{A}_{00}^L \mathcal{A}_0^{L*} + \mathcal{A}_{00}^R \mathcal{A}_0^{R*} \right),$ $J_4'(q^2) = -\sqrt{\frac{2}{3}}\beta_\ell^2 \left(\operatorname{Re}\left(\mathcal{A}_{00}^L \mathcal{A}_{\parallel}^{L*} \right) + \operatorname{Re}\left(\mathcal{A}_{00}^R \mathcal{A}_{\parallel}^{R*} \right) \right),$ $J_{5}^{\prime}(q^{2}) = 2\sqrt{\frac{2}{3}}\beta_{\ell}^{2}\left(\operatorname{Re}\left(\mathcal{A}_{00}^{L}\mathcal{A}_{\perp}^{L*}\right) + \operatorname{Re}\left(\mathcal{A}_{00}^{R}\mathcal{A}_{\perp}^{R*}\right)\right),$ $J_{7}^{\prime}(q^{2}) = -2\sqrt{\frac{2}{3}}\beta_{\ell}^{2}\left(\operatorname{Re}\left(\mathcal{A}_{00}^{L}\mathcal{A}_{\parallel}^{L*}\right) - \operatorname{Re}\left(\mathcal{A}_{00}^{R}\mathcal{A}_{\parallel}^{R*}\right)\right),$ $J_8'(q^2) = \sqrt{\frac{2}{3}} \beta_\ell^2 \left(\operatorname{Re} \left(\mathcal{A}_{00}^L \mathcal{A}_{\perp}^{L*} \right) - \operatorname{Re} \left(\mathcal{A}_{00}^R \mathcal{A}_{\perp}^{R*} \right) \right).$

$B^0 \rightarrow K^* \mu^+ \mu^-$: acceptance

Figure 1: One-dimensional projections of the acceptance function determined from simulation.

 $\begin{array}{l} B^{0} \longrightarrow K^{*} \mu^{+} \mu^{-} \\ \text{Local FF} \end{array}$

34

Challenges: hardware trigger

ECAL occupancy > Muon one

 \Rightarrow tighter thresholds for electrons:

- **e p**_T > 2700/2400 MeV in 2012/2016
- µp_T > 1700/1800 MeV in 2012/2016 [LHCb-PUB-2014-046, 2019 JINST 14 P04013]

Mitigation:

- events triggered independently of the signal (TIS)
- (hadron trigger)

Challenges: material interaction

Electrons radiate much more Bremsstrahlung → recovery procedure:

Limitations:

- miss some photons and add fake ones
- ECAL resolution worse than tracking

→ worse mass resolution for electron modes
 → more and larger backgrounds
 → more complicated mass fit

How do we control the efficiencies?

Exploit J/ ψ modes to build double ratio to cancel systematic effects

$$R_{H} = rac{N(B
ightarrow H\mu^{+}\mu^{-})}{N(B
ightarrow HJ/\psi(e^{+}e^{-}))}} imes rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow HJ/\psi(e^{+}e^{-}))}} imes rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow HJ/\psi(e^{+}e^{-}))}}$$

LFU well tested in J/ ψ modes \rightarrow stringent cross-check

$$r_{J/\psi} = rac{N(B
ightarrow HJ/\psi(\mu^+\mu^-))}{N(B
ightarrow HJ/\psi(e^+e^-))} imes rac{\epsilon(B
ightarrow HJ/\psi(e^+e^-))}{\epsilon(B
ightarrow HJ/\psi(\mu^+\mu^-))}$$

Measurement of $\mathbf{R}_{_{\mathbf{K}}}$ and $\mathbf{R}_{_{\mathbf{K}^*}}$

- $B^{*} \rightarrow K^{*}II$ and $B^{0} \rightarrow K^{*}II$ studied simultaneously
 - two q² bins: [0.1, 1.1] (low) and [1.1, 6] GeV² (central)
 - $m(K^{+}\pi^{-}) \in [792, 992] \text{ MeV for } B^{0} \rightarrow K^{*}II$

Main improvements:

- constraint cross-feed backgrounds from data
- tighter e[±] PID selection
- specific modelling of e[±] misID background

Details in arXiv:2212.09152 and arXiv:2212.09153

Measurement of $\mathbf{R}_{_{\mathbf{K}}}$ and $\mathbf{R}_{_{\mathbf{K}^*}}$

Simultaneous fit to low, central and J/ ψ regions; K and K^{*}; and μ^{\pm} and e[±]

• R_{K} central q²:

Measurement of $\mathbf{R}_{_{\!\!K}}$ and $\mathbf{R}_{_{\!\!K^*}}$

Results of four simultaneous measurements:

