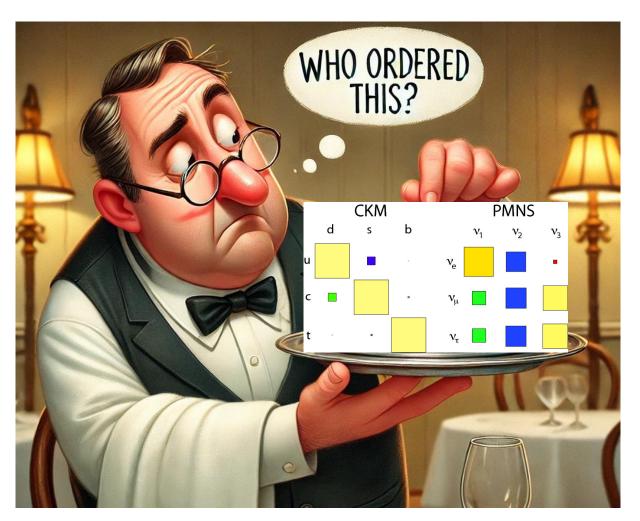

Flavour patterns from Entanglement Minimization?

Sokratis Trifinopoulos

Moriond, Electroweak 24 March 2025

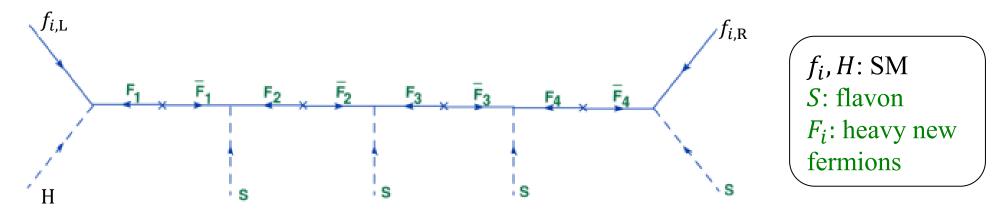

The flavor sector of the Standard Model

- The SM (+ GR) are arguably our most celebrated intellectual achievements in fundamental science.
- ► It is a gauge theory with **19** (+7 for the vSM) input parameters leads to **thousands** of accurate predictions!
- \triangleright 13(+7) of these parameters concern the *flavor* sector:
 - 9(+3) fermion masses
 - 4(+4) mixing parameters
- The mixing parameters are organized in the Cabibbo–Kobayashi–Maskawa (**CKM**) and Pontecorvo–Maki–Nakagawa–Sakata (**PMNS**) matrices, each parametrized by three angles θ_{12} , θ_{13} , θ_{23} and a CP-violating phase δ .

But flavor seems ad-hoc!

The mixing angles for quark flavors are hierarchical, i.e. the CKM is almost diagonal:

$$45^{\circ} \gg \theta_{\rm CKM,12} > \theta_{\rm CKM,13} \approx \theta_{\rm CKM,23} \approx 0$$


The parameters of the neutrino mixing appear to be of comparable size and no new relation is known among them, i.e. the PMNS appears to be anarchic:

$$45^{\circ} > \theta_{\text{PMNS},12} \sim \theta_{\text{PMNS},23} > \theta_{\text{PMNS},13} \gg 0$$

Traditional approach: Flavor symmetries

- Assume that there is an exact symmetry in the UV, which appears broken in the IR.
- \triangleright Archetypical example: Froggatt-Nielsen U(1)

- The mechanism yields a mass term: $O(1)\varepsilon^{Q_i+Q_j}f_{i,L}f_{j,R}H$ with $\varepsilon=\frac{\langle S\rangle}{M_F}$ (spurion).
- *Advantage: working within an established paradigm, i.e. QFTs with broken symmetries.
- ❖ Drawbacks: i) new UV degrees of freedom (often) lie beyond experimental reach
 ii) conservation of free parameters iii) spurion analysis of CKM is incompatible with PMNS.

What if there is another way?

...to reduce the SM input parameters without new symmetries in the UV or/and new heavy particles?

[Thaler, **Trifinopoulos**] 2410.23343

What we have (so far): Numerical observations (from various fronts) that may hint towards a new principle:

The quantum entanglement generated in $2 \rightarrow 2$ elastic fermion scattering induced by electroweak interactions is minimized when the flavor parameters assume (roughly) their ν SM values.

- ➤ What we don't have (yet):
 - i) Any fundamental justification for this principle,
 - ii) a unique choice of entanglement measure.

Quantum Entanglement

- Another fundamental physical resource is: **entanglement.** Similarly to energy, it is a tangible measurable quantity that can be <u>transferred</u>, <u>stored</u>, and <u>consumed</u>.
- What is entanglement?

- I. a property of (at least) two particles: the quantum state of each particle cannot be described independently of the state of the others no matter the distance between them.
 - If two particles A and B get entangled, then: $|\psi_{AB}\rangle \neq |\psi_{A}\rangle \otimes |\psi_{B}\rangle$ (non-seperable)
- 2. inherently quantum & non-local: there is no classical equivalence as proven by **Bell's theorems**; the correlations exist even when the measurements are space-like separated!
- 3. a carrier of information: central to QIS tasks like quantum teleportation & cryptography.

Measures of entanglement (states)

> Quantum information (or better lack thereof) is quantified by the

von Neuman entropy:
$$S[\rho] = -\text{Tr}(\rho \log \rho)$$
, $(S[\rho] = 0 \text{ for pure states})$

Entanglement is quantified by the information contained in the subsystems via the

Entanglement entropy:
$$S_E[\rho] = -\text{Tr} (\rho_R \log \rho_R)$$
, $(\rho_R = \text{Tr}_A \rho \text{ or } \text{Tr}_B \rho \text{ , for bipartite systems})$

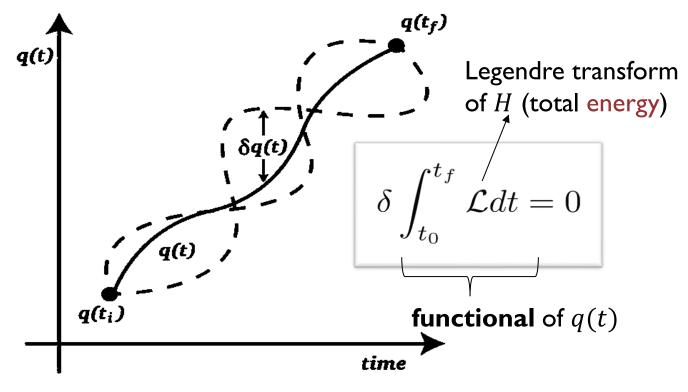
- $\gt S_E[\rho]$ is a formal measure of entanglement. For pure states it is the unique measure (every other is monotonically related to it). [Plenio,Virmani] quant-ph/0504163
- A more convenient quantity to characterize entanglement of pure states (entanglement witness) is the

Linear entropy:
$$E[\rho] = \frac{d}{d-1} \left| 1 - \operatorname{Tr} \rho_R^2 \right|$$
, $(0 \le E[\rho] \le 1)$ maximally entangled (Bell states)

Measures of entanglement (operators)

- > How is entanglement generated at the fundamental level? scattering & decay processes!
- ightharpoonup Scattering is described by means of the unitary ${\cal S}$ operator that connects the Fock spaces ${\cal F}$ of the incoming and outgoing asymptotic states: $|{
 m out}
 angle={\cal S}|{
 m in}
 angle$. [Balasubramanian et al] 1108.3568 [Peschanski, Seki] 1602.00720
- We can ask how much entanglement is generated by S. The answer depends on the initial states, e.g. $CNOT |00\rangle = |00\rangle$, $CNOT |10\rangle = |10\rangle$, but $CNOT \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |0\rangle\right) = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$.
- ho We define the **entangling power**: $\mathcal{E}(\mathcal{S}) \equiv \overline{E(\mathcal{S}|i\rangle \otimes |j\rangle}$ [Zanardi, Zalka, Faoro] quant-ph/0005031

...and find its extrema with respect to the input parameters of the theory!

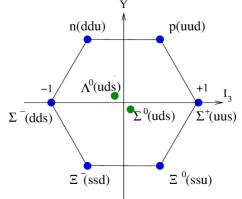


Nature already chooses to extremize a functional...

Nature always uses the simplest means to accomplish its effects.


Pierre Louis Maupertuis, 1744

Emergent Symmetries from MinEnt


Minimization of $\mathcal{E}(\mathcal{S})$ had been attempted twice in the literature:

 $2 \rightarrow 2$ scattering in low-energy QCD and found:

spin-flavor symmetries

⇔ MinEnt

Later, [Low, Mehen] 2104.10835 showed that the S operator produces no entanglement,

when: $\mathcal{S} \sim [1]$ (\Rightarrow Wigner) or $\mathcal{S} \sim [\mathrm{SWAP}]$ (\Rightarrow Shrödinger)

[Carena, Low, Wagner, Xiao] 2307.08112 studied tree-level scattering within the 2HDM

and found:

SO(8) symmetry \Leftrightarrow MinEnt

√ natural alignment limit with a SM-like Higgs

 Φ_c^+

 Φ_b^0

 Φ_a^+

Flavor lives in discrete Hilbert spaces

Let us consider the G-dimensional quark Hilbert spaces H_u and H_d . For G=3, the quark states are qutrits with the following basis elements (corresponding to the 6 quark flavors):

$$H_u: |1\rangle_u, |2\rangle_u, |3\rangle_u,$$

 $H_d: |1\rangle_d, |2\rangle_d, |3\rangle_d.$

- \triangleright Similarly, for leptons and neutrinos we define H_{ℓ} and H_{ν} (we really mean mass eigenstates).
- \blacktriangleright We build the product Hilbert space: $H_f = H_u \otimes H_d$. A generic state can be written as:

$$|\alpha\rangle = \sum_{i,j=1}^G \alpha_{ij} \, |ij\rangle_{ud} \;, \qquad |ij\rangle_{ud} \equiv |i\rangle_u \otimes |j\rangle_d \;, \qquad \mathrm{tr}(\alpha^\dagger \alpha) = 1 \;.$$

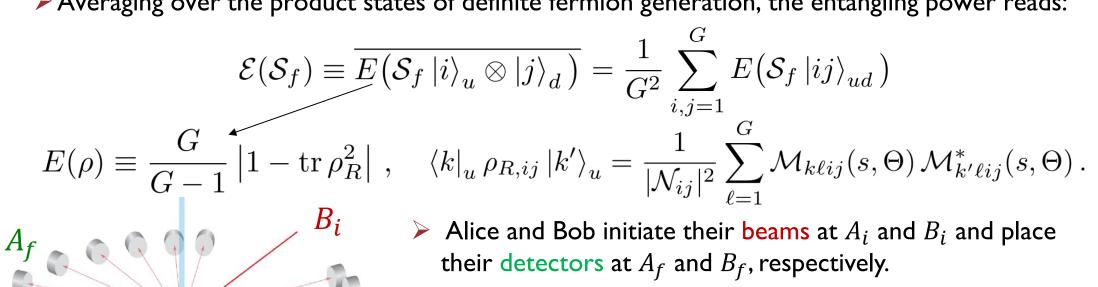
Isolating H_f in elastic scattering

 \blacktriangleright We want to characterize the flavor entanglement generated by $2 \to 2$ elastic, fermion scattering.

flavor indices
$$u_{Li}(p_1)d_{Lj}(p_2) \to u_{Lk}(p_3)d_{L\ell}(p_4)$$
 negative helicity (\approx left-handed chirality)

$$\begin{array}{ccc}
\mathcal{F} & \xrightarrow{\mathcal{S}} & \mathcal{F} \\
\downarrow \Pi_{\text{in}} & & \downarrow \Pi_{\text{out}} \\
H_f & \xrightarrow{\mathcal{S}_f} & H_f
\end{array}$$

 \mathcal{F} $\stackrel{\mathcal{S}}{\longrightarrow}$ \mathcal{F} $\downarrow \Pi_{\mathrm{out}}$ $\downarrow \Pi_{\mathrm{out}}$ $\downarrow \Pi_{\mathrm{out}}$ $\downarrow H_f$ $\stackrel{\mathcal{S}_f}{\longrightarrow}$ H_f $\stackrel{\mathcal{S}_f}{\longrightarrow}$ H_f $\stackrel{\mathcal{S}_f}{\longrightarrow}$ $\stackrel{$

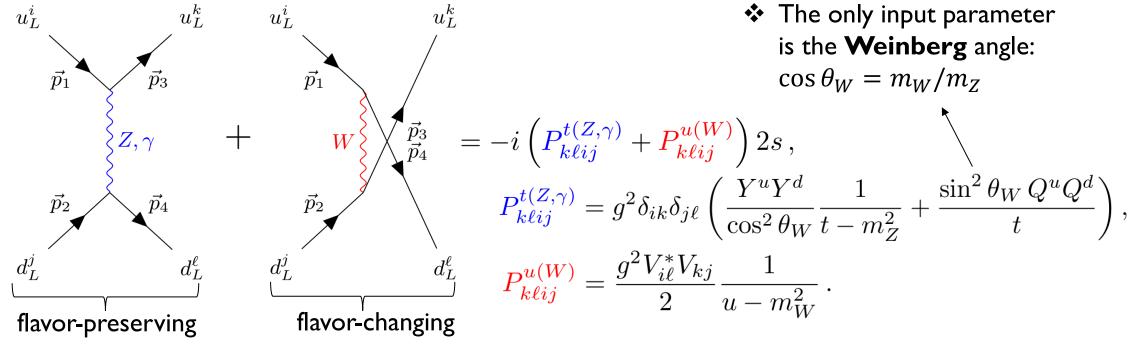

$$|\operatorname{out}\rangle_{ij} = \frac{\prod_{\operatorname{out}}\mathcal{S}\left|\operatorname{in}\rangle_{ij}}{\left|\prod_{\operatorname{out}}\mathcal{S}\left|\operatorname{in}\rangle_{ij}\right|} = \frac{1}{\mathcal{N}_{ij}}\sum_{k,\ell=1}^{G} \frac{\operatorname{perturbative amplitude}}{\mathcal{N}_{k\ell ij}\left(s,\Theta\right)\left|p_{3},k;p_{4},\ell\right\rangle} \text{ center-of-mass energy normalization}$$

ightharpoonup The operator \mathcal{S}_f ($G^2 imes G^2$ matrix) is non-unitary, but still preserves normalization: $\mathrm{diag}(\mathcal{S}_f \mathcal{S}_f^\dagger) = \mathbb{I}$.

Perpendicular entangling power

> Averaging over the product states of definite fermion generation, the entangling power reads:

- > They can each decide to send either up or down quarks, but they can't measure final state flavor. Consequently,
 - there is one unambiguous position for A_f and B_f , which is at $\Theta = 90^{\circ}$ (invariance under $A_f \leftrightarrow B_f$).
- ightharpoonup We define the **perpendicular entangling power** as: $\left. \mathcal{E}_{\min}^{\perp}(\mathcal{S}_f^{\perp}) \equiv \mathcal{E}_{\min}(\mathcal{S}_f) \right|_{\Theta = \frac{\pi}{c}}$

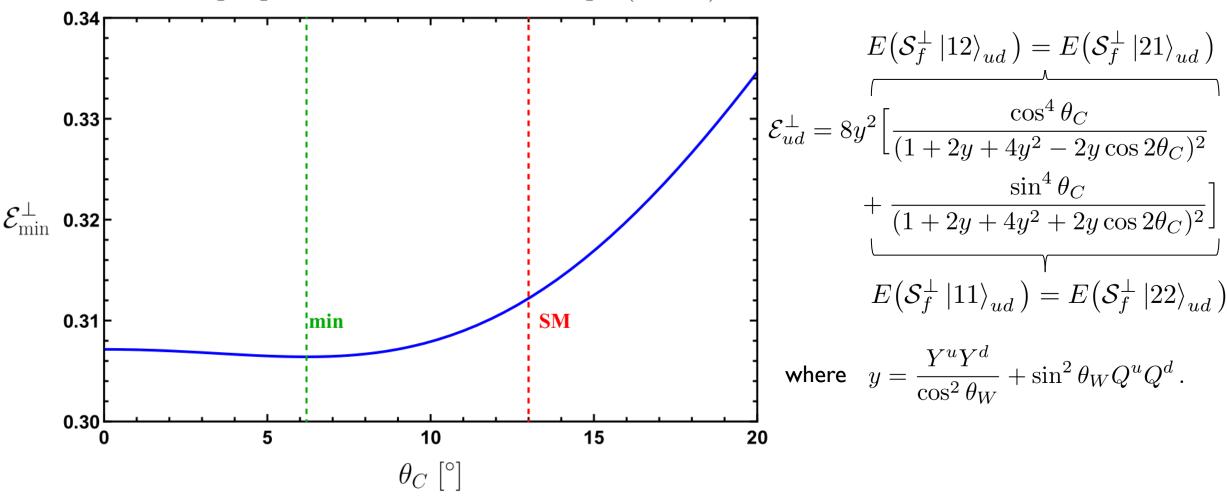


SM flavor-entangling interactions

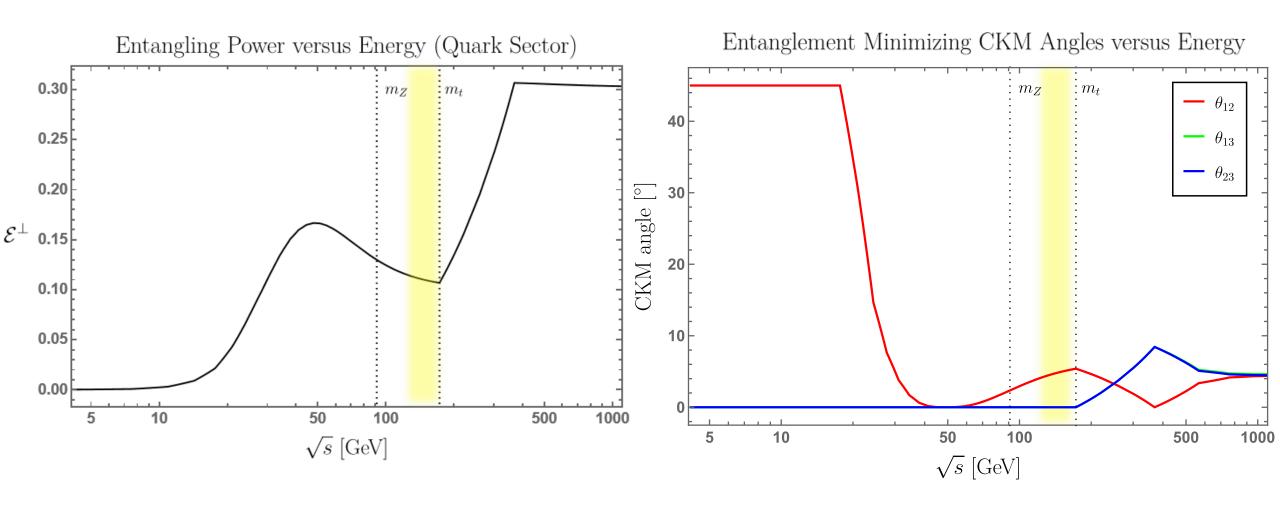
Let us start with the two quark generations to gain intuition. In this case there is one flavor parameter, the **Cabibbo** angle $\theta_{\text{CKM},12} = \theta_{\text{C}} \in [0,\pi/4]$. We want to examine:

$$\theta_C^{\min} = \operatorname*{arg\,min}_{\mathrm{ch},\theta_C} \mathcal{E}_{\mathrm{ch}}^{\perp}[\theta_C]$$

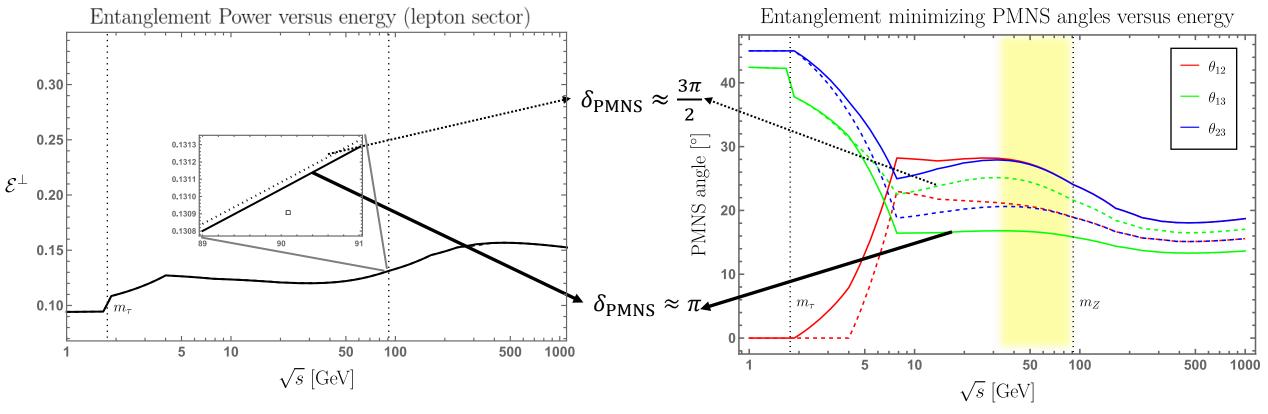
 \triangleright At LO the minimal elastic entangling channel in the SM happens to be $ud \rightarrow ud$ induced by electroweak interactions. In the high-energy limit we have:



or preserving

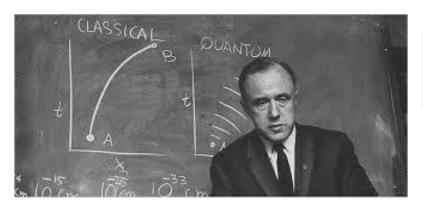

Entangling power of EW interactions (G = 2)

Entangling Power versus Cabibbo Angle (G = 2)


Towards the Full CKM $(ud \rightarrow ud)$

Towards the Full PMNS $(\nu\ell \rightarrow \nu\ell)$

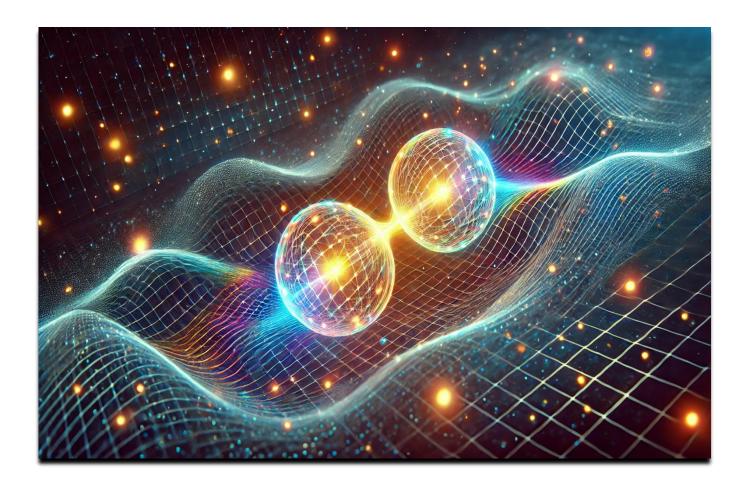
The only differences between quarks and leptons are: i) the EW charges & ii) the participation/absence of the heaviest fermion (tau/top) in scattering processes at $\sqrt{s} \sim m_Z$.



 $ightharpoonup \delta_{PMNS}$ is the only flavor parameter which is not yet experimentally determined. In our framework, the preferred value (at LO) is close to π !

Conclusions

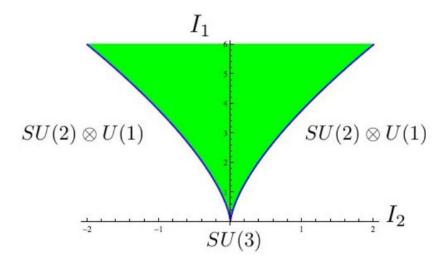
- To our knowledge, this is the first time the differing CKM and PMNS structures have arisen from a common mechanism (without new symmetries).
- Even though one can argue that the experimentally known parameters are postdictions, we (may) have a prediction for the $\delta_{PMNS} \approx \pi$.
- Further explorations are required to ultimately answer the question: Is this all just a numerical coincidence, or could minimization of quantum entanglement really be a fundamental principle of nature?
- Injecting QIS concepts into HEP is speculative but very exciting!



All things physical are information-theoretic in origin and this is a *participatory universe*.

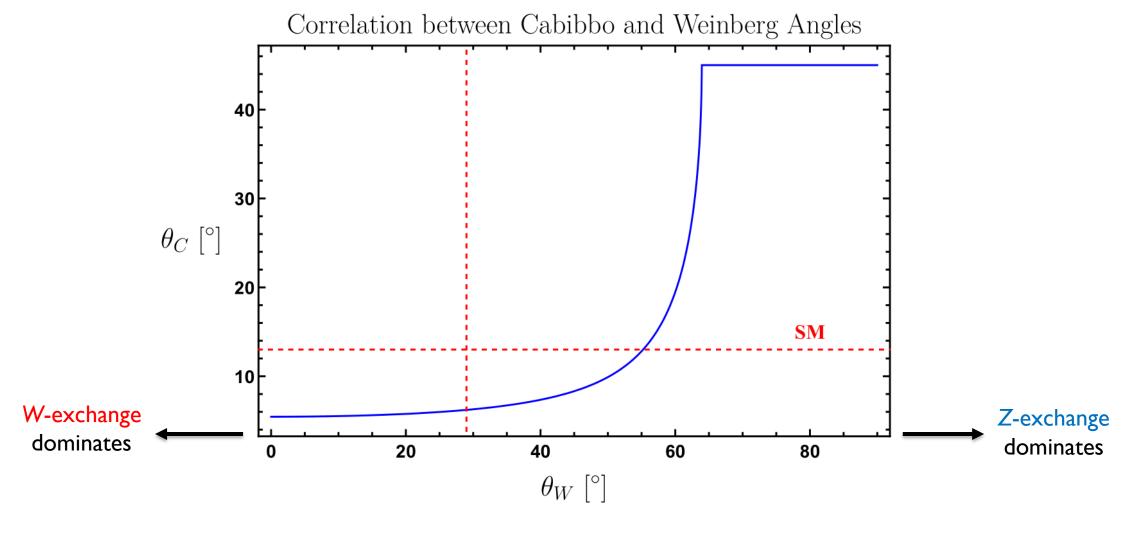
[J.A.Wheeler] "Information, Physics, Quantum: The Search for Links" in Complexity, Entropy and the Physics of Information (1990)

Thank you!



Flavor from a Minimization (Energy) Principle

There is already an attempt in the literature of invoking a Minimization principle for explaining the flavor structures.


[Alonso, Gavela, Isidori, Maniani] 1306.5927

- Group theoretical methods are employed to identify the natural extrema of a generic potential V invariant under the SM flavor symmetry (in the massless limit).
- The extrema correspond to specific maximal subgroups and thus to symmetry-breaking patterns that generate the texture of the resulting Yukawa matrices (at O(1) accuracy).
- \triangleright Discrete flavor symmetries, e.g. A_4 provide better numerical postdictions. However, the required symmetry breaking has different sources between quarks and leptons and the vacuum alignment is problematic. [He, Keum, Volkas] hep-ph/0601001

Entangling power of EW interactions (G = 2)

What is next?

 \triangleright A 10% increase in the charged-current contribution leads to $\theta_c \approx 13^{\circ}!$ Historically, the one-loop level has been highly illuminating!

We need to develop an IRC safe entanglement measure for bypartiite systems.

other QIS concepts might prove to be useful!

- \triangleright Revisit the nucleon-nucleon scattering results in the presence of $heta_{QCD}$. Are the CP-violating
- Intriguing fact: EntMax in helicity space wrt the gauge couplings in tree-level EW scattering yields $\theta_W = \frac{\pi}{6}$. [Cervera-Lierta et al] 1703.02989

