## Flavour changing charged currents at LHCb

Lars Eklund, on behalf of the LHCb collaboration

Testing lepton flavour universality with semileptonic b-decays











- Lepton flavour universality in the SM
  - How to test this hypothesis with charged current decays
- Current theoretical and experimental status
- Recent results: measurements of  $R(D^-)$  and  $R(D^{*-})$
- New result: study of  $B^- \rightarrow D^{**0} \tau^- \bar{\nu}_{\tau}$  decays
- Conclusions



- Lepton flavour universality: equal gauge boson coupling for all leptons
  - Phase space and hadronic effects influence the decay rates
- Tested in  $W^{\pm}$  and Z decays





- Ratios of branching fractions
  - Cancellation of uncertainties
- Family of semileptonic decay ratios

 $R(H_c) = \frac{\mathcal{B}(H_b \to H_c \ \tau^- \ \bar{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \ \mu^- \ \bar{\nu}_{\mu})}$  $H_b = B^0, B^+, B^0_s, B^+_c, \Lambda^0_b$  $H_c = D^0, D^+, D^+_s, D^{*+/0}, D^{**+/0}, \Lambda^+_c, \Lambda^{*+}_c, J/\psi$ 

• Hadronic  $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$  decays



• Muonic  $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$  decays



- Neutrinos are not reconstructed in LHCb
  - Yields determined from fits with binned templates

\*Charge conjugate modes are included



## Semileptonic LFU measurements by LHCb

Muonic  $\tau^-$  decays

Run 1 (2015)PRL 115 11803 $R(D^{*+}) = 0.336 \pm 0.027 \text{ (stat)} \pm 0.030 \text{ (syst)}$ 

Run 1 (2023)PRL 131 11802 $R(D^*) = 0.281 \pm 0.018 \text{ (stat)} \pm 0.024 \text{ (syst)}$  $R(D^0) = 0.441 \pm 0.060 \text{ (stat)} \pm 0.066 \text{ (syst)}$ 

Run 2 (2024)PRL 134 061801 $R(D^{*+}) = 0.402 \pm 0.081$  (stat)  $\pm 0.085$  (syst) $R(D^+) = 0.249 \pm 0.043$  (stat)  $\pm 0.047$  (syst)

Run 1 (2018)  $R(J/\psi) = 0.71 \pm 0.17 \text{ (stat)} \pm 0.18 \text{ (syst)}$  Hadronic  $\tau^-$  decays

Run 1 (2018)PRL 120 171802 $R(D^{*+}) = 0.291 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \pm 0.013 \text{ (ext)}$ 

Part of run 2 (2023)  $R(D^{*+}) = 0.260 \pm 0.015 \text{ (stat)} \pm 0.016 \text{ (syst)} \pm 0.012 \text{ (ext)}$ 

Run 1 (2022)  $R(\Lambda_c^+) = 0.242 \pm 0.026 \text{ (stat)} \pm 0.040 \text{ (syst)} \pm 0.059 \text{ (ext)}$ 

Run 1 & part of run 2 (2023), longitudinal polarisation  $F_L^{D^*} = 0.41 \pm 0.06 \text{ (stat)} \pm 0.03 \text{ (syst)}$ 

Run 1 & 2 (2025)LHCb-PAPER-2024-037: presented today $R(D_{1,2}^{**0}) = 0.13 \pm 0.03$  (stat)  $\pm 0.01$  (syst)  $\pm 0.02$  (ext)



- HFLAV average of  $R(D^{(*)})$ 
  - $3.3\sigma$  deviation from the SM prediction



- BSM processes may affect these ratios
  - Leptoquarks, two Higgs doublet, nonuniversal left-right models, ...



- Angular analysis gives additional sensitivity
  - E.g. triple product asymmetries

PRD 90 (2014) 074013



PRL 134 061801

- Data collected in 2015 2016 with  $\int \mathcal{L} = 2 \text{ fb}^{-1}$
- Measure  $\mathcal{B}(\bar{B}^0 \to D^{(*)+}\tau^- \bar{v}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{(*)+}\mu^- \bar{v}_{\mu})$ 
  - $D^{*+} \rightarrow D^+ \pi^0$ , ( $\pi^0$  not reconstructed)
  - $D^+ \rightarrow K^- \pi^+ \pi^+$
- Yields determined from a 3D fit
  - $q^2 = (p_{B^0} p_{D^{(*)-}})^2$
  - $E_{\mu}^*$ : muon energy in  $B^0$  rest frame
  - $m_{miss}^2 = (p_{B^0} p_{D^{(*)-}} p_{\mu^+})^2$
  - Templates determined from simulation and control samples





<u>PRD 108 (2023) 012018</u> <u>Erratum</u>

- Data collected in 2015 2016 with  $\int \mathcal{L} = 2 \text{ fb}^{-1}$
- Measure  $\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})$ , with  $D^{*+} \to D^0 \pi^-$ 
  - Normalised to  $\bar{B}^0 \rightarrow D^{*+}\pi^-\pi^-\pi^+$
  - Using known  $\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu})$  gives

 $R(D^{*+}) = 0.260 \pm 0.015 \pm 0.016 \pm 0.012$  $R_{comb}(D^{*+}) = 0.267 \pm 0.012 \pm 0.015 \pm 0.013$ 

- The yield determined from a 3D fit
  - $q^2 = (p_{\bar{B}^0} p_{D^{*+}})^2$
  - Anti- $D_s^+$  BDT output
  - $t_{\tau}$ : tau decay time
  - Templates determined from simulation and control samples



- Background  $B^0 \to D^{**}\tau^-\nu_\tau$  with  $D^{**} \to D^{*+}\pi$ 
  - Set to 3.5% from predictions and known  $\ensuremath{\mathcal{B}}$
  - These assumptions require verification



- $D^{**}$  states that could enter  $R(D^*)$ 
  - Decay to  $D^{*-}\pi^+$

 $\begin{array}{l} D_1'(2400)^0,\,m=2412\pm9\;{\rm MeV/c^2},\\ \Gamma=314\pm29\;{\rm MeV/c^2}\\\\ D_1(2420)^0,\,m=2422.1\pm0.6\;{\rm MeV/c^2},\\ \Gamma=31.3\pm1.9\;{\rm MeV/c^2}\\\\ D_2(2460)^0,\,m=2461.1\pm0.8\;{\rm MeV/c^2},\\ \Gamma=47.3\pm0.8\;{\rm MeV/c^2}\\ \end{array}$ 

- $D^{**0}$ : sum of all three in this analysis
- $D_{1,2}^{**0}$ : sum of  $D_1(2420)^0$  and  $D_2(2460)^0$

- Goals of the analysis
  - Search for  $B^- \rightarrow D^{**0} \tau^- \bar{\nu}_{\tau}$  decays
  - Measure  $\mathcal{B}(B^- \to D_{1,2}^{**0}\tau^-\bar{\nu}_{\tau}) \times \mathcal{B}(D_{1,2}^{**0} \to D^{*+}\pi^-)$

- Measure 
$$R(D_{1,2}^{**0}) = \frac{\mathcal{B}(B^0 \to D_{1,2}^{**0} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(B^0 \to D_{1,2}^{**0} \mu^- \overline{\nu}_{\mu})}$$

- SM prediction  $0.09 \pm 0.02$ 
  - PRD 97 (2018) 075011 JHEP 05 (2022) 29 arXiv:2102.11608
- Measured normalised to  $\mathcal{B}\left(B^- \to D_{1,2}^{**0}D_s^{(*)-}\right)$ 
  - Its  $\mathcal{B}$  is determined from  $\mathcal{B}$  measurement and amplitude analysis of  $B^+ \rightarrow D^{*-}D^+_S\pi^+$  (JHEP 08 (2024) 165
  - Increased statistics by combining  $D_s^-$  and  $D_s^{*-}$



- Run 1 & 2 dataset:  $\int \mathcal{L} = 9 \text{ fb}^{-1}$ 
  - Hadronic  $\tau^-$  decays
- Trigger and pre-selection requirement
- Flight distance requirement on the  $\tau^-$ 
  - Suppresses prompt  $B \to D^{**0}\pi^-\pi^-\pi^+(X)$
- Three multivariate BDTs to reject:
  - Fake  $D^{**0}$  candidates
  - Multibody  $D_s^+$  with track swap
  - $D_s^+ \rightarrow \pi^+ \pi^- \pi^+(X)$  mimicking  $\tau^+$  (anti- $D_s^+$ )
- Fit to  $D^{*+}\pi^-$  to spectrum without anti- $D_s^+$  BDT
  - Investigate components of the decay
  - Not possible to distinguish the broad  $D'_1(2400)^0$  from combinatorial background

## Selected mass spectrum, w/o the anti- $D_s^+$ BDT



 $2456 \pm 75 D_1(2420)^0$  candidates  $633 \pm 69 D_2^*(2460)^0$  candidates



Submitted to PRL arXiv:2501.14943

- 3D binned fit to extract the yields
  - $\Delta m = m_{D^{**0}} m_{D^{*+}}$
  - Anti- $D_s^+$  BDT output
  - $q^2 = (p_{B^0} p_{D^{*-}})^2 = m^2$  of the  $\tau^- \bar{\nu}_{\tau}$  system
- Signal templates determined from simulation
  - Combined  $D_1(2420)^0$  and  $D_2^*(2460)^0$  template
  - Relative size of  $D_1(2420)^0$ ,  $D_2^*(2460)^0$  and  $D_1'(2400)^0$  fixed from predictions
- Backgrounds from simulation and control samples
- Control samples from data
  - $D^0$  and  $D^{*+}$  sidebands
  - Wrong-sign  $D^{*\pm}\pi^{\pm}$  combinations (WS)
  - Removing the  $\tau^-$  flight distance requirement
  - Selecting  $m(\pi^+\pi^-\pi^+)$  close to  $D_s^+$  mass
  - Removing anti- $D_s^+$  BDT requirement

Candidates / (25 MeV/ $c^2$ ) 300 LHCb  $B^- \rightarrow D_{12}^{**0} \tau^- v_{\tau}$  $B \rightarrow fake D^{**0} \pi^- \pi^- \pi^+$ 9 fb<sup>-1</sup> 200  $B^- \rightarrow D_1'(2400)^0 \tau^- v_{\tau}$  $B \rightarrow D^{*+}D^{*-}(X)$ 100  $B^{-} \rightarrow D_{1,2}^{**0} D_{s}^{-}(X)$  $B \rightarrow D^{*+}(DK)^{-}$  $B^{-} \rightarrow D_{1}^{\prime} (2400)^{0} D_{s}^{-} (X)$  $B \rightarrow D^{**0} \pi^- \pi^- \pi^+$  prompt 500 600 700  $\Delta m [MeV/c^2]$  $\text{GeV}^2/c^4$ ) Candidates / 0.09 800 600 LHCb 9 fb<sup>-1</sup> 600 LHCb C  $9 \, \text{fb}^{-1}$ Candidates / ( 007 007 400 200 0.2 0.3 0.1 0.4 0.5 6 8 10 BDT-antiD<sub>s</sub> output  $q^2 \,[{\rm GeV^2/c^4}]$ 

 $123 \pm 23 B^- \rightarrow D_{1,2}^{**} \tau^- \bar{\nu}_\tau \text{ candidates}$  $220 \pm 34 B^- \rightarrow D^{**0} \tau^- \bar{\nu}_\tau \text{ candidates}$ 

- ...



- 3.5 $\sigma$  significance for for  $B^- \rightarrow D^{**0} \tau^- \bar{\nu}_{\tau}$ 
  - Pure  $D_2(2460)^0$  contribution excluded at 2.7 $\sigma$
- Branching ratio measurement

- Primary quantity: 
$$\kappa = \frac{\mathcal{B}(B^0 \to D_{1,2}^{**0} \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(B^0 \to D_{1,2}^{**0} D_s^{(*)})} = 0.19 \pm 0.04$$

$$\mathcal{B}(B^- \to D_{1,2}^{**0}\tau^-\bar{\nu}_{\tau}) \times \mathcal{B}(D_{1,2}^{**0} \to D^{*+}\pi^-) = (0.051 \pm 0.017)\%$$

| Systematic uncertainty on $\kappa$            |       |
|-----------------------------------------------|-------|
| Decay model                                   | 3.7%  |
| $D_1(2420)^0/D_1(2420)^0$ ratio               | 4.4%  |
| Simulation sample size                        | 5.9%  |
| Binning scheme                                | 5.0%  |
| $B^- \rightarrow D^{**0}(DK)^-$ contamination | 3.6%  |
| Selection efficiency                          | 2.0%  |
| $	au^-$ flight distance requirement           | 4.0%  |
| WS background description                     | 2.0%  |
| Total                                         | 11.4% |

 $D_2^*(2460)^0 q^2$  distribution for three decay models





- SM has the same gauge boson coupling for all leptons
- Semileptonic decay ratios test this assumption

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu)}{\mathcal{B}(H_b \to H_c \mu \nu)}$$

- Study of  $B^- \to D^{**0} \tau^- \bar{\nu}_{\tau}$  decays
  - Evidence for this family of decays
  - Branching ratio measurement

 $\mathcal{B}(B^- \to D_{1,2}^{**0}\tau^- \bar{\nu}_{\tau}) \times \mathcal{B}(D_{1,2}^{**0} \to D^{*+}\pi^-) = (0.051 \pm 0.017)\%$ 

- Lepton flavour universality ratio

$$R(D_{1,2}^{**0}) = \frac{\mathcal{B}(B^0 \to D_{1,2}^{**0}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(B^0 \to D_{1,2}^{**0}\mu^-\bar{\nu}_{\mu})} = 0.13 \pm 0.04$$



PRD 108 (2023) 012018

- Estimate  $D^{**0}$  yield in  $R(D^{*-})$  hadronic
  - $(8.9 \pm 2.1)\%$  and < 13.1% at 95% C.L.
    - Assumed 3.5% compatible 2.6σ
  - Corresponds to a shift in  $R(D^{*-})$  of 0.013
    - Covered by the assigned uncertainty
- Important input for future measurements



Several semileptonic LFU measurements are in the pipeline

Analyses with run 3 data are in progress

## THANK YOU FOR YOUR ATTENTION