Search for the $B \to K^{(*)} v \bar{v}$ decays at Belle II

Corentin Santos Under the supervision of Isabelle Ripp-Baudot and Giulio Dujany

IPHC, CNRS, University of Strasbourg,

11 June 2025

(CNrs)

Analysis context

2 Belle II toolbox

Calibration of the Flavour Tagger

$\bigcirc B \to K \nu \bar{\nu} \text{ search}$

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Motivations

Why $B \rightarrow K^{(*)} \nu \bar{\nu}$?

- $b \rightarrow s v \bar{v}$ transition = Flavor Changing Neutral Current
- Rare decay (suppressed by Glashow–Iliopoulos–Maiani mechanism): Branching Ratio (BR) ~ O (10⁻⁵)
- Well described by the Standard Model (SM)
- ⇒ Sensitive to high energy new physics contributions [arXiv:2301.06990]
- ⇒ Since neutrinos are never measured, also sensitive to light new particles [arXiv:2503.19025]

Definition (Signal strength)

$$\mu = \frac{BR(B \to K^{(*)} \nu \bar{\nu})_{\text{measured}}}{BR(B \to K^{(*)} \nu \bar{\nu})_{\text{expected}}}$$

(1)

Decay channels

 $B \to K^{(*)} \nu \bar{\nu}$ is a generic term for many possible decays:

- $B^{\pm} \rightarrow K^{\pm} \nu \bar{\nu}$
- $B^0 \rightarrow K^0_S \nu \bar{\nu}$
- $B^{\pm} \rightarrow (K^{*\pm} \rightarrow K^{\pm} \pi^0) \nu \bar{\nu}$
- $B^{\pm} \rightarrow \left(K^{*\pm} \rightarrow K^0_S \pi^{\pm} \right) \nu \bar{\nu}$
- $B^0 \rightarrow (K^{*0} \rightarrow K^{\pm} \pi^{\mp}) \nu \bar{\nu}$

 \longrightarrow Focus on the $B^{\pm} \rightarrow K^{\pm} v \bar{v}$ decay channel in this presentation, but the goal of the analysis is to measure the BR of all the decays listed above.

Experimental constraints

- Two neutrinos in a 3-body decay = cannot simply reconstruct the signal
- Lack of kinematic constraints \Longrightarrow **Complete angular acceptance**
- Only signature is a *K* \Longrightarrow **Clean environment**

Only experiment capable of measuring the BR of this decay: Belle II

Why Belle II?

- e^+e^- collisions \longrightarrow Clean environment \checkmark
- Current integrated luminosity $\mathcal{L} = 365 \text{ fb}^{-1} \longrightarrow \text{High statistics } \checkmark$
- Detector covering a 4π solid angle \longrightarrow **Complete angular acceptance** \checkmark

What about the almost invisible signal?

Handling the invisible signal

\longrightarrow We infer information about the B_{sig} from the B_{tag} since they are *entangled*

Tagging strategies

Hadronic Tagged Analysis (HTA)

Semileptonic Tagged Analysis (STA)

Inclusive Tagged Analysis (ITA)

Tagging efficiency	<u> </u>
$\mathcal{O}\left(0.1\% ight)$	$\mathcal{O}\left(10\% ight)$
,	Tagging purity
80% - 20%	$\mathcal{O}\left(1\% ight)$

Previous $B^+ \to K^+ \nu \bar{\nu}$ analyses

Figure: from arXiv:2311.14647

Goal: Carry an independent measurement using semileptonic tagging

B2Knn - STA

Why semileptonic tagging?

- Higher efficiency than HTA
- Higher purity than ITA
- Complementary to the other two Belle II analyses
- Complementary to the Belle and BaBar analyses

Analysis	Uncertainty on the BF
	naively scaled to 362 fb ⁻¹
Belle HTA	2.29×10^{-5}
Belle STA	0.80×10^{-5}
BaBar HTA	1.41×10^{-5}
BaBar STA	0.81×10^{-5}
Belle II HTA	1.20×10^{-5}
Belle II ITA	0.71×10^{-5}

Table: Comparison of the uncertainties on the branching fraction of the various analyses, scaled to 362 fb^{-1}

Analysis context

2 Belle II toolbox

Calibration of the FLAVOUR TAGGER

$\bigcirc B \to K v \bar{v} \text{ search}$

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

The Belle II experiment

- International collaboration
- Taking data on the SuperKEKB accelerator, in Japan, since 2019
- e^+e^- collisions at $\sqrt{s} = 11$ GeV
- Record for highest instantaneous luminosity: $5.1\times 10^{34}~\text{cm}^2/\text{s}$

Event geometries

Full Event Interpretation (FEI)

- **Tagging algorithm**: reconstruct the tag side
- Based on Boosted Decision Trees (BDT)
- Can be *hadronic* or **semileptonic**
- For the semileptonic, we consider the following *B*_{tag} decays:
 - $B \rightarrow Dev$
 - $B \rightarrow D \mu \nu$
 - $B \rightarrow D^* e v$
 - $B \rightarrow D^* \mu \nu$
 - $B \rightarrow D^{(*)}\ell \nu \pi$, $\ell \in \{e, \mu\}$, also available, but not used

About tagging

- Tagging is an important technique when no direct information on the signal side is available
- Essential for the $B \to K^{(*)} \nu \bar{\nu}$ search, since quasi-invisible
- \longrightarrow Can also be used for study of *CP* violation in complex *B* decays

Analysis context

2 Belle II toolbox

3 Calibration of the FLAVOUR TAGGER

$\blacksquare B \to K v \bar{v} \text{ search}$

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

• Want to measure the *CP*-asymmetry

Definition (CP-asymmetry)

$$a^{CP} = rac{N_{B^0} - N_{ar{B}^0}}{N_{B^0} + N_{ar{B}^0}}$$

 \rightarrow Need to know the *flavour* of the *B* meson at the time of its decay (B^0 or \overline{B}^0)

• Self-tagged decays: one of the final state particles gives away the flavour of the B meson

• What if the signal is not self-tagged ?

• Want to measure the *CP*-asymmetry

Definition (CP-asymmetry)

$$a^{CP} = rac{N_{B^0} - N_{ar{B}^0}}{N_{B^0} + N_{ar{B}^0}}$$

- \longrightarrow Need to know the *flavour* of the *B* meson at the time of its decay (B^0 or \overline{B}^0)
 - Self-tagged decays: one of the final state particles gives away the flavour of the B meson
 - What if the signal is not self-tagged ?

• Want to measure the *CP*-asymmetry

Definition (CP-asymmetry)

$$_{CP}=rac{N_{B^0}-N_{ar{B}^0}}{N_{B^0}+N_{ar{B}^0}}$$

 \longrightarrow Need to know the *flavour* of the *B* meson at the time of its decay (B^0 or \overline{B}^0)

а

• Self-tagged decays: one of the final state particles gives away the flavour of the *B* meson

• What if the signal is not self-tagged ?

• Want to measure the *CP*-asymmetry

Definition (*CP*-asymmetry)

$$^{CP}=rac{N_{B^0}-N_{ar{B}^0}}{N_{B^0}+N_{ar{B}^0}}$$

 \longrightarrow Need to know the *flavour* of the *B* meson at the time of its decay (B^0 or \overline{B}^0)

а

• Self-tagged decays: one of the final state particles gives away the flavour of the *B* meson

• What if the signal is not self-tagged ?

Tagging (again)

- Can rely on self-tagging *B*_{tag}decays
- 13 signature categories were define:

• Categories → Classification → Classifier → Machine Learning ⇒ Introducing the FLAVOUR TAGGER

Parameters

• FLAVOUR TAGGER characterized by its **tagging efficiency**:

Definition (Tagging efficiency)	
$arepsilon = rac{oldsymbol{N}_{B^0}^{ ext{tag}} + oldsymbol{N}_{ar{B}^0}^{ ext{tag}}}{oldsymbol{N}_{B^0} + oldsymbol{N}_{ar{B}^0}}$	(3)

• Mistagging quantified by the **wrong tag fraction**, *w*:

Definition (Wrong tag fraction)

$$N_{B^{0}}^{\text{tag}} = \varepsilon \left((1 - w) N_{B^{0}} + w N_{\bar{B}^{0}} \right)$$
(4)

$$N_{\bar{B}^{0}}^{\text{tag}} = \varepsilon \left(w N_{B^{0}} + (1 - w) N_{\bar{B}^{0}} \right)$$
(5)

Observed vs True CP-asymmetry

• Observed CP-asymmetry written as

$$a_{\rm obs}^{CP} = \frac{N_{B^0}^{\rm tag} - N_{\bar{B}^0}^{\rm tag}}{N_{B^0}^{\rm tag} + N_{\bar{B}^0}^{\rm tag}} = (1 - 2w) a^{CP}$$

Definition (Dilution factor)

$$r\equiv |1-2w|\in [0,1]$$

Interpretation:

- If $w = \frac{1}{2}$, then r = 0 and it gives us no information
- If w = 0 or w = 1, then r = 1 and it gives us the full information

(6)

FLAVOUR TAGGER algorithm: GFLAT

- Based on a Graph Neural Network [arXiv:2402.17260]
- Procedure:
 - 1. Reconstructs and classifies the tracks among the 13 categories with a probability
 - **2.** Takes into consideration all the probabilities and computes qr, where $q \in \{-1, 1\}$ is the flavour of the particle

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the $B_{
 m sig}$
- 2. Use the Flavour Tagger on those events to get *qr*
- 3. Create 7 bins of |*qr*
- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the B_{sig}
- 2. Use the Flavour Tagger on those events to get *qr*
- 3. Create 7 bins of |*qr*|
- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

Strategy:

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the B_{sig}
- 2. Use the Flavour Tagger on those events to get qr

3. Create 7 bins of |qr|

- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the B_{sig}
- 2. Use the Flavour Tagger on those events to get qr
- 3. Create 7 bins of |*qr*|
- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the B_{sig}
- 2. Use the Flavour Tagger on those events to get qr
- 3. Create 7 bins of |*qr*|
- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the B_{sig}
- 2. Use the Flavour Tagger on those events to get *qr*
- 3. Create 7 bins of |*qr*|
- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Goal:

- Implement a calibration strategy for the FLAVOUR TAGGER in a *time-integrated* way
- Automatize and optimize the calibration process

- Want to measure the tagging efficiency and the wrong tag fraction
- 1. Work with events with self-tagged decays for the B_{sig}
- 2. Use the Flavour Tagger on those events to get qr
- 3. Create 7 bins of |*qr*|
- 4. Fit the overall ΔE PDF
- 5. Extract the N^{tag} for B^0 and \overline{B}^0
- 6. Compute the wrong tag fraction and the tagging efficiency

Calibration strategy: signal

• Need self-tagged decays:

$$B^{0} \to D^{-}\pi^{+}$$

$$B^{0} \to D^{*-} (\to \bar{D}^{0}(K^{+}\pi^{-})\pi^{-})\pi^{+}$$

$$B^{0} \to D^{*-} (\to \bar{D}^{0}(K^{+}\pi^{-}\pi^{0})\pi^{-})\pi^{+}$$

$$B^{0} \to D^{*-} (\to \bar{D}^{0}(K^{+}\pi^{-}\pi^{-}\pi^{+})\pi^{-})\pi^{-})\pi^{-}$$

• Also consider $B \rightarrow D^{(*)-}K^+$ equivalents, called "BDK"s

Calibration strategy: extracting the yields

- Important kinematic variable for signal selection: $\Delta E = E_B E_{beam}$
- Fit the ΔE distributions on MC for the signals $BD\pi$ and BDK, as well as the $B\overline{B}$ and $q\overline{q}$ backgrounds
- Sum all the shapes and fit the overall ΔE PDF
- Extract the yield

Calibration strategy: wrong tag fraction

- Need to discriminate between:
 - Same or Opposite Flavours (SF or OF)
 - Flavour of the B_{tag} (+ or -)
- Define 7 bins of |qr|
- Compute the wrong tag fractions w_i^{\pm} for each bin $i \in [0, 6]$

$$w_{i}^{\pm} = \frac{f_{i}^{\pm} - R}{(1 - R)\left(1 + f_{i}^{\pm}\right)}$$

with

$$f_i^{\pm} = \frac{n_{\text{OF},i}^{\pm}}{n_{\text{SF},i}^{\pm}}, \quad R = \frac{\chi_d}{1 - \chi_d}, \quad \chi_d = 0.1860 \pm 0.0011[2]$$

and deduce

$$w_i = \frac{1}{2} \left(w_i^+ + w_i^- \right)$$

B2Knn - STA

Calibration strategy: tagging efficiency

• Define a tagging efficiency for each bin $i \in [0, 6]$

$$\varepsilon_{i}^{\pm} = \frac{n_{\text{OF},i}^{\pm} + n_{\text{SF},i}^{\pm}}{N_{B^{0}}^{\text{tag}} + N_{\bar{B}^{0}}^{\text{tag}}}$$

and compute the *effective* tagging efficiency

Definition (Effective tagging efficiency)

$$\varepsilon = \sum_{i=0}^{6} \varepsilon_i \left(1 - 2w_i\right)^2$$

(7)

Calibration workflow

Calibration optimization: simultaneous fit

• Before this work:

- Fits of the various shapes (signal, BDK, $B\overline{B}$, $q\overline{q}$) were done sequentially
- Fits were independent on the the bins and the categories

• Idea:

- Parallelize the fits of the shapes
- Simultaneously fit the 7 bins and the 4 categories
Calibration optimization: backgrounds studies

- qq: reduced continuum background
 - Via a cut on a geometric variable \checkmark
 - Via a BDT (worked on MC but not on data)
- $B\overline{B}$: studied the bump observed at $\Delta E = 0$
 - \longrightarrow due to signal events wrongly considered as background at MC level

Calibration optimization: automatization

- Automatize the processes using **B2LUIGI**
- Pros: Parallelize processes and easy to use
- Whole workflow automated:
 - Reconstruction of the events, management of the dataset and pre-processing
 - Calibration strategy and visualization

Calibration optimization: summary

- Parallelized the fits of the shapes
- Transform the independent fits into a simultaneous fit
- Reduced the continnum background
- Studied the *BB* background
- Automatized the workflow using B2LUIGI

Results:

- Wrong tag fractions (bin-by-bin): 48%, 42%, 35%, 24%, 18%, 11%, 3%
- Effective tagging efficiency on data: $\varepsilon = 36.90 \pm 0.8\%$

Analysis context

2 Belle II toolbox

Calibration of the Flavour Tagger

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Analysis flow

- 1. Preselection
- 2. Apply data/MC corrections
- 3. Train and apply Boosted Decision Tree (BDT) for selection
- 4. Compute systematics uncertainties
- 5. Fit to get the signal strength μ

Control samples:

- For *q* \bar{q} continuum: off-resonance data and MC
- For *BB* background: wrong charged and pion-enriched sample
- For signal: embedding

Analysis context

2 Belle II toolbox

Calibration of the Flavour Tagger

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Reconstruction and preselection

Overview:

- 1. Reconstruct the B_{tag} using FEI
- 2. Reconstruct the signal-side Kaon (see details on the cut in the appendix 1)
- 3. Combine the corresponding tracks
- 4. Remove all extra "good" tracks and remaining π^0 , Λ , K_S^0

Analysis context

2 Belle II toolbox

3 Calibration of the Flavour Tagger

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Corrections overview

Corrections	Status
Particle Identification (PID)	\checkmark
FEI	\checkmark
Signal Form Factors	to be improved
Continuum	\checkmark
ECLCluster ¹ Extra Energy (EExtra)	to be improved
Specific backgrounds	to be improved

Table: Table of the corrections and their status

¹ECL = Electromagnetic Calorimeter

FEI and PID corrections

- PID and FEI corrections based on recommendations
- May switch to **SYSVAR**

mode	labels	cal factor	error
mode0	Dev	1.18	0.09
mode1	Dμv	1.03	0.08
mode2	D*ev	0.97	0.07
mode3	D*μν	0.91	0.06

Table: Calibration factors and errors for FEI, with sgn probability cut > 0.004, on B^+

Continuum correction (BDTc)

Computed by reweighting the MC to the data based on the BDTc output in the off-resonance sample, $weight = \frac{BDTc}{1-BDTc}$.

Figure: Plots of q^2 before and after correction

Analysis context

2 Belle II toolbox

Calibration of the Flavour Tagger

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Selection

- Using XGBCLASSIFIER
- Using Shapley values for feature importance
- *F*₁-score for signal on validation data: 97%
- Signal region: BDT output > 0.4
- Efficiency after cut on BDT output > 0.4: 77.5×10^{-4}

BDT input variables

- The color gradient indicates the value of the feature
- The x-axis is the Shapley value (see Slide 74); the more on the right(left) it is, the more it contributes to the signal(background) prediction

Selection on sidebands (offres)

Sideband	data/MC in preselection	data/MC in signal region
offres	$1.114 \pm 0.021(4900 data events)$	0.7 ± 0.5 (6data events)

Selection on sidebands (wc)

Sideband	data/MC in preselection	data/MC in signal region
WC	$0.963 \pm 0.019(6721 data events)$	1.1 ± 0.5 (7data events)

Selection on sidebands (kid)

Sideband	data/MC in preselection	data/MC in signal region
kid	$1.101 \pm 0.012(6588 data events)$	$1.8 \pm 0.5(37 data \text{ events})$

New possible sideband: extra tracks

- Based on "Measurement of *B* → τν Branching Ratio with Hadronic FEI Tagging in the Run1 dataset"
- Will use events with extra tracks to validate the E^{extra} corrections on $B\bar{B}$
- Still need to work on the details of the selection

Figure: EExtra distribution for the extra tracks sideband

Figure: EEXTRA distribution for the extra tracks sideband after continuum substraction and bin-by-bin correction

Analysis context

2 Belle II toolbox

Calibration of the Flavour Tagger

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Backgrounds

Background Fractions in signal region

Specific corrections and systematics for the following backgrounds:

- $D \to K_L^0 X$
- ons $B \rightarrow D^{**}$
 - $B^+ \rightarrow K^+ K^0_L K^0_L$
 - $B^+ \rightarrow K^+ n \bar{n}$

Analysis context

2 Belle II toolbox

Calibration of the Flavour Tagger

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

Conclusion and outlook

Methodology

- Create histograms in signal region (BDT > 0.4) with 12 bins
- Run a maximum likelihood fit with pyhf on the data
- Compute the profile likelihood ratio with the signal strength μ as the parameter of interest
- Get the expected error on BR and expected upper limits

Definition (Likelihood function)

$$\mathcal{L}(\mu, \theta | \mathbf{n}) = \frac{1}{Z} \prod_{b=1}^{12} \operatorname{Poisson}(n_b | \nu_b(\mu, \theta)) p(\theta)$$

with:

 $\theta \in \mathbb{R}^N$ is a vector of *N* nuisance parameters;

 n_b is the number of events in bin b, v_b the expected number of events in bin b;

Z a normalization constant;

p is a prior acting as a constraint on the nuisance parameters.

(8)

Analysis context

2 Belle II toolbox

Calibration of the FLAVOUR TAGGER

$\bigcirc B \to K v \bar{v} \text{ search}$

- Reconstruction and preselection
- Corrections
- Selection
- Backgrounds studies
- Fit

5 Conclusion and outlook

Next steps

The whole machinery is present for the analysis flow, we now plan to optimize and study in details each steps:

- Detailed study of the backgrounds
- Embedding samples for signal efficiency validation
- Optimize BDTs features and hyperparameters
- Improve systematics evaluations

Trainings, conferences and publications

- Scientifc trainings: 54h
- Transversal trainings: 55h
- Internation conference already attended: CHEP 2024
- Other conferences expected in Winter 2026
- Article: proceedings of CHEP 2024 [arxiv:2503.09401]
- Poster: soon presenting at the Congrès Annuel de la Société Française de Physique (SFP) 2025

6 Supplementary Material

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

Belle II subdetectors

6 Supplementary Material

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

Preselection

"Good Track":

- $p_t > 0.2 \, {\rm GeV/c}$
- *E* < 5.5 GeV
- thetaInCDCAcceptace
- *dr* < 2 cm
- |dz| < 4 cm

<u>K+ :</u>

- "Good Track"
- *dr* < 0.5 cm
- |dz| < 2 cm
- Kaon ID > 0.9^{*a*}
- <u>π⁰</u>:(pi0eff30_May2020)
 - $InvM \in]0.120, 0.145[GeV/c^2$
 - daughterDiffOfPhi \in] 1.5, 1.5[rad
 - daughterAngle < 1.4 rad

^awill switch to Neural Network PIDs when ready

Preselection

ROE Mask: for signal and tag

- "Good Track"
- clusterReg==1 and E > 0.08 GeV

or clusterReg==2 and E > 0.03 GeV

- or clusterReg==3 and E > 0.06 GeV
- clusterNHits > 1.5
- clusterTiming < 200 ns
- 0.2967 < clusterTheta < 2.6180 rad

FEI cuts:

- cos (θ_{BY}) ∈] − 4, 3[
- cosTBTO < 0.9
- SignalProbability > 0.004

Rest Of Event

ROE Cluster Cuts: (for EExtra)

- "Good Track"
- clusterReg == 1 and clusterE > 0.100 GeV

or clusterReg == 2 and clusterE > 0.060 GeV

- or clusterReg == 3 and clusterE > 0.150 GeV
- 0.2967 < clusterTheta < 2.6180

Two masks studied for now:

- minC2TDist>50 cm
- beamBackgroundSuppression > 0.5 and fakePhotonSuppression > 0.5

Ask for:

- No extra good track in the event
- No extra K_S , Λ or π^0 in the event

6 Supplementary Material

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

PID corrections - Kaon

- \longrightarrow Cut: cos (θ_K) > -0.682
- \longrightarrow Efficiency of 99.9%

PID corrections - Kaon sideband

PID corrections - Pion sideband

PID corrections - Pion sideband

PID corrections - Pion

PID corrections - Pion

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

Continuum suppression pre-BDT

Summary:

Cut	Efficiency after	Purity	Sigma minuit
	Signal probability > 0.01	[%]	[×10 ⁻⁵]
Original cuts	74.2	12	0.4
$-1.75 < \cos(\theta_{BY}) < 1.1$	66.1	14	0.4
$-1.9 < \cos(\theta_{BY}) < 1.2$	65.6	13	0.4
NREMAININGTRACKS	58.4	14	0.5
R2	53.1	13	0.4
Signal probability > 0.01	65.0	14	0.4
Signal probability > 0.1	26.5	17	0.6

Table: Table summarizing the cuts applied and their consequences on the various metrics

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

EExtra corrections (in pion-enriched sideband, before corrections)

Computed by reweighting the MC to the data on NPHOTONS in the wrong charged control sample.

Using BDT variables:

Using MINC2TDIST:

EExtra corrections (in pion-enriched sideband, after corrections)

Computed by reweighting the MC to the data on NPHOTONS in the wrong charged control sample.

Using BDT variables:

Using MINC2TDIST:

 \longrightarrow Need to study the wrong charged control sample in details

EExtra corrections (in wrong charged pion-enriched sideband before corrections)

Computed by reweighting the MC to the data on NPHOTONS in the wrong charged control sample.

EExtra corrections (in wrong charged pion-enriched sideband after corrections)

Computed by reweighting the MC to the data on NPHOTONS in the wrong charged control sample.

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

Shapley values - Explanation

- Method to attribute the prediction of a model to its features
- Originates from cooperative game theory:
 - Imagine a set *N* (of *n* players) and a gain function *v* that assigns a value to each coalition *S*
 - Question: How to fairly distribute the total gain among the players?
 - Answer: Shapley values

$$\varphi_i(\mathbf{v}) = \frac{1}{n} \sum_{S \subseteq N \setminus \{i\}} {\binom{n-1}{|S|}}^{-1} \left(\mathbf{v}(S \cup \{i\}) - \mathbf{v}(S) \right)$$

Shapley values - Example

```
import xgboost as xgb
import shap as sh
# ----- XGBoost Classifier ----- #
bdt = xgb.XGBClassifier(**param)
bdt.fit(X_train, y_train, sample_weight=weights_train)
# ----- Shapley Values ----- #
explainer_xgb = sh.TreeExplainer(bdt)
explanation = explainer_xgb(X_test)
# ----- SHAP Interpreter Plot ----- #
sh.plots.beeswarm(explanation,max_display=len(branches))
```

Listing: Example Python Code

- Preselection cuts
- PID corrections
- Selection
- EExtra corrections
- Shapley values
- Backgrounds

Backgrounds

Channel 1 sl charged evt type	occurence (398 evts)
misID K _{sig}	3.77% (15)
at least 1 K_L	24.62% (98)
$D\ell\nu + D\ell\nu$	46.74% (179)
$D\ell\nu + KK^0K^0$	9.92% (38)
$D\ell v + Hadrons$	9.66% (37)
$D\ell\nu + c\overline{c}$	9.40% (36)
$D\ell\nu + DHadrons$	5.74% (22)
$Dn\pi + D\ell\nu$	5.48% (21)
$D\ell\nu + DD$	2.09% (8)
$Dn\pi + DHadrons$	1.04% (4)
$D\ell\nu + D\tau\nu$	1.04% (4)
$Dn\pi + c\overline{c}$	0.78% (3)
$Dn\pi + Dn\pi$	0.26% (1)
$Dn\pi + D\tau\nu$	0.26% (1)
$KK^0K^0 + DD$	0.26% (1)
DHadrons + DHadrons	0.26% (1)
other	6.78% (27)

[1] Belle II Collaboration, Evidence for $B^+ \rightarrow K^+ v \bar{v}$ decays, (2024), arXiv:2311.14647.

[2] $B^0-\bar{B}^0$ Mixing, https://pdg.lbl.gov/2024/reviews/rpp2024-rev-b-bar-mixing.pdf.