

KM3-230213A — The most energetic neutrino event ever detected

Mischa Breuhaus, CPPM Seminar, 7.4.25

The event KM3-230213A

- Detected on 13. February 23 at 01:16:47 UTC
- Published in nature on 12.2.25, 5 companion papers in arXiv
- With very high probability a neutrino
- Median neutrino energy 220 PeV
- New window of neutrino universe
- How was it detected?
- Why are we sure it is a neutrino?
- Where does it come from?

Outline

- KM3NeT
- Detection, energy and direction
- Comparison with other experiments
- Interpretation and implications

The KM3NeT collaboration

20 countries, 52 institutes, more than 250 collaborators

The KM3NeT detector

• Each DU: 18 DOMs

• Each DOM: 31 PMTs

The planned KM3NeT detector

- Offshore Toulon
- Depth 2440 m
- Average horizontal spacing ~ 20 m
- Vertical DOM spacing: 9 m
- Lower energies in GeV regime

- · Offshore Sicily
- Depth 3500 m
- Average horizontal spacing: ~ 95 m
- Vertical DOM spacing: 36 m
- Higher energies > TeV

Detection principle of neutrinos

- v interacts in charged and neutral current interactions
- Production of Cherenkov light of secondary particle
- Tracks & Showers

KM3-230213A

Detected with ARCA,
 21 lines in operation

 3672 triggered PMTs (35% of all active

PMTs)

Energy determination

- Directly related to number of triggered PMTs
- Estimated from dedicated MC simulations
- Uncertainties from absorption length, PMT efficiencies

90% confidence interval: 35-380 PeV Inferred neutrino energy: 220 PeV, 68% confidence 110-790 PeV, 90% confidence 72 PeV – 2.6 EeV

Direction determination

- Dominated by uncertainty on absolute positioning of detector → improvement in the future (up to 0.12°)
- Acoustic positioning, compass data for tilt
- $RA = 94.3^{\circ}$, $Dec = -7.8^{\circ}$
- $R(68\%) = 1.5^{\circ}$
- $R(99\%) = 3.0^{\circ}$

Why are we very sure it is an astrophysical neutrino?

- Background: Muons, atm. Neutrinos
- Muons: $10^{-9} 10^{-10}$ evt/yr, dependent on direction
- Atm. Neutrinos > 100 PeV: $1-5x10^{-5}$ evt/yr

Neutrino flux point

 Apply certain selection cuts, ARCA detector with 19 and 21 detection lines

$$E^2 \Phi(E) = 5.8^{+10.1}_{-3.7} \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

Also: Search for neutrinos in event direction. No significant neutrino source detection by ARCA/ORCA, ANTARES and IceCube

Comparison with other measurements/potential tension

- Why did other experiments detected nothing so far?
- Comparison/joint analysis with IceCube and Pierre Auger observatories

The ultra-high-energy event KM3-230213A within the global neutrino landscape $(The\ KM3NeT\ Collaboration)$

O. Adriani, ^{1,2} S. Aiello, ³ A. Albert, ^{4,5} A. R. Alhebsi, ⁶ M. Alshamsi, ⁷ S. Alves Garre, ⁸ A. Ambrosone, ^{9,10} F. Ameli, ¹¹ M. Andre, ¹² L. Aphecetche, ¹³ M. Ardid, ¹⁴ S. Ardid, ¹⁴ C.Argüelles, ¹⁵ J. Aublin, ¹⁶ F. Badaracco, ^{17,18} L. Bailly-Salins, ¹⁹ Z. Bardačová, ^{20,21} B. Baret, ¹⁶ A. Bariego-Quintana, ⁸ Y. Becherini, ¹⁶ M. Bendahman, ¹⁰ F. Benfenati Gualandi, ^{22,23} M. Benhassi, ^{24,10} M. Bennani, ¹⁹ D. M. Benoit, ²⁵ E. Berbee, ²⁶ E. Berti, ¹ V. Bertin, ⁷ P. Betti, ¹ S. Biagi, ²⁷ M. Boettcher, ²⁸ D. Bonamo, ²⁷ S. Bottai, ¹ A. B. Bouasla, ²⁹ J. Boumaaza, ³⁰ M. Bouta, ⁷ M. Bouwhuis, ²⁶ C. Bozza, ^{31,10} R. M. Bozza, ^{9,10} H.Brânzas, ³² F. Bretaudeau, ¹³ M. Breuhaus, ⁷ R. Bruijn, ^{33,26} J. Brunner, ⁷ R. Bruno, ³ E. Buis, ^{34,26} R. Buompane, ^{24,10} J. Busto, ⁷ B. Caiffi, ¹⁷ D. Calvo, ⁸ A. Capone, ^{11,35}

https://arxiv.org/abs/2502.08173

Comparison with UHE data

- Include exposures from IceCube + Auger → reduced flux
- Discrepancies up to $\sim 3\sigma$, depending on method

Global fit, KM3NeT + IceCube

- Single power-law
- Broken power-law
- Using HESE sample: Slight preference for break

Conclusion:

- Tension with non-detection between 2.5 σ and 3 σ \rightarrow In line with assumption that KM3-230213A is upward fluctuation of neutrino flux
- Not yet possible to confirm hardening of neutrino spectrum

Neutrino production

- Atmospheric neutrinos: Background
- Astrophysical neutrinos: Produced by CRs

Cosmic Rays

- Highly energetic particles
- Accelerated by various sources and mechanisms
- Measured at Earth, produce atmospheric neutrinos in air showers
- ν production within sources, direct information about CR origin and sources. These are the ones we are looking for in neutrino astronomy

Neutrino production by CRs

Collisions with photons

Photo-meson production

$$p + \gamma \rightarrow p + k \cdot \pi^0 / \pi^{\pm}$$

Also: Photo-disintegration of nuclei, photo-pair production

y-rays are produced too

Why are neutrinos unique messengers?

y-ray absorption

ν only produced by hadronic particles

v are not absorbed and clear proof of hadronic CRs

Astrophysical origin

- No transient source, such as e.g. a GRB, found
- Neutrino could originate from 'steady' source

Cosmogenic origin

https://arxiv.org/abs/2502.08508

Blazar

https://arxiv.org/abs/2502.08484

The potential Galactic origin

Gas target

- Monoceros R2 molecular cloud: potential gas target for CRs
- Distance: ~830 pc, 9x10⁴ solar masses

Diffuse Galactic emission and potential CR accelerators

- Galactic diffuse emission: negligible
- No known potential CR accelerator nearby

Gamma-ray observations

- Only two potential Galactic Fermi-LAT sources
- Nothing from HAWC or LHAASO

Limits on neutrino emission

 Limits from HAWC non-observations below PS flux

Conclusion:
Galactic origin of
KM3-230213A
highly unlikely

Extragalactic origin

Cosmogenic

Active Galactic nuclei

- CRs interacting with EBL and CMB
- Diffuse, isotropic neutrino flux

- Only UHE-CRs contribute
- CRs until z ~ 1 contribute to UHE-CRs on Earth

Comoving source density:

$$S(z) \propto (1+z)^m$$

 A CR composition involving more protons leads to higher fluxes

- Uncertainties in EBL models negligible
- UHE-CR formation rate might be different than the one of matter
- Large uncertainties, but cosmogenic origin is possible
- Could tune cosmogenic models to explain UHE neutrinos and constrain relevant model parameters

- Supermassive black hole accreting matter
- Accretion disk, jet formation
- CR acceleration and ν production in jet
- Blazar: AGN with jet pointing towards Earth
- Very strong evidence that blazars emit neutrinos

- 17 sources found
- Method 1: eROSITA (Xrays) + NVSS (radio) + in WISE blazar strip (infrared)
- Method 2: VLBI observations
- Method 3: 5th Roma BZ Catalog blazar catalog
- Method 4: Fermi-LAT DR4 catalog (γ-rays)

- Dedicated VLBA observations performed in November 2024, archival infrared, X-ray and γray data from Fermi-LAT
- 10 sources show strong radio emission at pc and sub-pc scale → strong jet beaming
- 3 blazars show flaring activity

- Source 0605-085: brightest in radio, γray flaring activity
- PMN J0606-0724: major radio flare
- MRC 0614-083: Xray flaring activity
- No clear association with specific source

(a) The Fermi-LAT light curve and a VLBI image of 0605-085: the brightest radio source in the neutrino localization region that experiences a gamma-ray flaring activity around the neutrino arrival (Section 5.1).

(b) The radio light curve for PMN J0606-0724 that experiences a major flare in close coincidence to the neutrino arrival (Section 5.2).

(c) The X-ray light curve for MRC 0614-083 that indicates a flaring activity around the neutrino arrival (Section 5.3).

Lorentz invariance violation

 Superluminous ν: energy loss via pair production:

$$\nu \rightarrow \nu + e^+ + e^-$$

• Assume propagated distance of $L=10c_{\nu}/\Gamma$ for interaction length Γ

$$\delta \equiv c_{\nu}^2 - 1$$

Lorentz invariance violation

S*	100
Method	Limit
IceCube atmospheric	6.2×10^{-11}
IceCube NGC 1068	1.5×10^{-15}
IceCube TXS $0506+056$	2.4×10^{-18}
Stecker et al. (Ref. $[20]$)	5.2×10^{-21}
KM3-230213A (conservative)	1.8×10^{-21}
KM3-230213A (likely)	4.2×10^{-22}
Stecker et al. (Ref. [20]) KM3-230213A (conservative)	1.8×10^{-21}

Improves
 previous limits
 by one order of
 magnitude

Conclusion

- KM3-230213A: Highest energetic neutrino ever detected ~220 PeV
- Directional uncertainty 1.5° 3°, improved in the future
- Not produced in the Milky Way, cosmogenic as well as blazar origin possible