
Comments for round-table discussion

Traditional (physics-based) weather and climate modeling uses HPC

→ AI actually REDUCES compute in these domains!

Once trained, AI is significantly faster at prediction than physical models

Likely the case for ML emulators of physical models in your domain!

We develop and train targeted models that are best for the applications 

–> These are much smaller than huge foundation models e.g., from OpenAI, 
that are meant to be very general

You can do that in your domain as well!
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December 2021: Boulder County, Colorado

● Snow drought conditions through fall and winter 2021 created dry land-cover

● 80-100 mph winds, combined with ignition, launched an uncontrollable “fire storm”

● Loss of 2 lives. 1000 homes and 20 businesses were destroyed, and more damaged
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“The AI opportunity for the Earth is significant. Today’s AI explosion will see us add AI 

to more and more things every year.... As we think about the gains, efficiencies and 

new solutions this creates for nations, business and for everyday life, we must also 

think about how to maximize the gains for society and our environment at large.”

– The World Economic Forum: Harnessing Artificial Intelligence for the Earth. 2018 

    

   
  



Climate Informatics: using Machine Learning 
to address Climate Change

2008 Started research on Climate Informatics, with Gavin Schmidt, NASA

 2010 “Tracking Climate Models” [Monteleoni et al., NASA CIDU, Best Application Paper Award]

 2011 Launched International Workshop on Climate Informatics, New York Academy of Sciences

 2012 Climate Informatics Workshop held at NCAR, Boulder, for next 7 years

 2013 “Climate Informatics” book chapter [M et al., SAM]

  2014 “Climate Change: Challenges for Machine Learning,” [M & Banerjee, NeurIPS Tutorial]

 2015 Launched Climate Informatics Hackathon, Paris and Boulder

 2018 World Economic Forum recognizes Climate Informatics as key priority

 2021 Computing Research for the Climate Crisis [Bliss, Bradley @ M, CCC white paper]

 2022 First batch of articles published in Environmental Data Science, Cambridge University Press 

 2024 13th Conference on Climate Informatics, Turing Institute, London 

 2025      14th Conference on Climate Informatics, April, Rio de Janeiro
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Approach: Exploit all available data

❑ Simulated data generated by physics-based models 
❑  Numerical Weather Prediction (NWP) models

❑  General Circulation Models (GCM)

❑  Regional Climate Models (RCM)

❑  Reanalysis data
❑  Gridded data products from data assimilation: 

applies physical laws to observations

 

❑  Observation data  
❑  Satellite remote sensing data

❑  In-situ data



AI Methods

❑ Semi-supervised, unsupervised, self-supervised learning
❑  New methods for downscaling (super-resolution), interpolation of geospatial data  

❑  New pretext tasks for self-supervised learning, e.g., STINT [Harilal et al., 2024]

❑  Regularization via multi-tasking over variables, lead-times

❑  Generative AI
❑  VAE, Normalizing Flows

❑  Diffusion and flow-based training

❑  Develop new generative downscaling methods, e.g., [Groenke et al., 2020]

 

❑  Learning under non-stationarity
❑  Learn level of non-stationarity over time and space



ADAPTATION
AI for Extreme Weather and Cascading Hazards 

Hurricane track prediction

Forecasting Indian Summer Monsoon 
precipitation extremes

Avalanche detection

Generative AI for weather forecasting[Giffard-Roisin et al., Frontiers 2020]



MITIGATION 

Reducing carbon emissions

Accelerate green energy transition

• AI-driven forecasting of solar, wind

• AI to downscale solar and wind data

Reduce compute for weather and 
climate modeling

• Once trained, AI is significantly faster 
at prediction than physical models



Use AI to learn relations between 
IPCC simulations and observations

• Robustify climate model ensemble 
forecasts 

• Projecting long-term sea-level rise

• Projecting long-term carbon emissions

IMPACTS
AI for Understanding and Predicting Climate Change

UCAR Science Education



AI for downscaling spatiotemporal data

Global climate model simulations are 
coarser scale (in space and time) than 
needed for multiple tasks in:

• Climate change adaptation

• Climate change mitigation

• Projecting long-term impacts

Approach: Use ML to downscale 
climate model data to relevant scales

[Gettelman, et al., Science Advances, 2022]



Revolution in AI for weather forecasting 
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Since 2022, a variety of AI models have 
shown weather forecasting performance 
comparable or BETTER than numerical
weather prediction (NWP).

These deep learning (DL) models are trained
on reanalysis data (ERA5) to predict the next
weather state given the current state

Model predictions are then « rolled-out » to 
forecast 7-10 days in the future

Image credit: European Center for Medium Range Weather Forecasting (ECMWF) website

What is reanalysis data?



ArchesWeatherGen

Score cards on Google’s Weather Bench 2

State-of-the-art 
performance, using 

MUCH less compute!

[Couairon, Singh, Charantonis, Lessig, Monteleoni, 2024]



Generative AI for weather forecasting

[ArchesWeatherGen, Couairon, Singh, Charantonis, Lessig, Monteleoni, 2024]



AI for Climate Data Equity
 
● Train models in high-data regions and apply them in low-data regions

○ Train and validate them in high-data regions

○ Fine-tune them using the limited data in the low-data regions and use them to 
generate more data.

● Contribution to climate data equity

○ Local scales (e.g. legacy of environmental injustice in USA)

○ Global scales: 

■ Global North historically emitted more carbon; Meanwhile there’s typically more data there

■ Global South is suffering the most severe effects of the resulting warming 16



17

“Many majority-
Black parts of the 
Southeast [USA] 
are relatively far 
from radar sites, 
meaning that it’s 
harder to gather 
information about 
storms impacting 
these areas.”

Credit: Jack Sillin, in 
[McGovern et al., 
Environmental Data 
Science, 2022]



Long-term goals

Cascading Hazards

•  Goal: move beyond individual weather extremes, to how they couple

•  With massive wildfires everywhere, there is extreme urgency!

Climate Justice

•  Our research should always help increase climate equity

•  Ultimately, we should strive for approaches to help UNDO the legacy of 
climate IN-justice



And many thanks to: 
 Arindam Banerjee, University of Illinois Urbana-Champaign
 Nicolò Cesa-Bianchi, Università degli Studi di Milano
 Tommaso Cesari, Toulouse School of Economics
 Guillaume Charpiat, INRIA Saclay
 Cécile Coléou, Météo-France & CNRS
 Michael Dechartre, Irstea, Université Grenoble Alpes 
 Nicolas Eckert, Irstea, Université Grenoble Alpes 
 Brandon Finley, University of Lausanne
 Sophie Giffard-Roisin, IRD Grenoble
 Brian Groenke, Alfred Wegener Institute, Potsdam
 Nidhin Harilal, University of Colorado Boulder
 Tommi Jaakkola, MIT
 Anna Karas, Météo-France & CNRS
 Fatima Karbou, Météo-France & CNRS
 Balázs Kégl, Huawei Research & CNRS
 David Landry, INRIA Paris
 Luke Madaus, Jupiter Intelligence
 Scott McQuade, Amazon
 Ravi S. Nanjundiah, Indian Institute of Tropical Meteorology
 Moumita Saha, Philips Research India
 Gavin A. Schmidt, NASA Senior Advisor on Climate
 Saumya Sinha, National Renewable Energy Lab
 Cheng Tang, Amazon

          
 

          

Thank you!

Climate and Machine Learning Boulder (CLIMB)



AI Research for Climate Change and Environmental Sustainability (ARCHES)



@envdatascience

An interdisciplinary, open access journal dedicated to the potential of 
artificial intelligence and data science to enhance our understanding of 
the environment, and to address climate change.

  Data and methodological scope: Data Science broadly defined, including: 
  Machine Learning; Artificial Intelligence; Statistics; Data Mining; Computer Vision; Econometrics

Environmental scope, includes: 
Water cycle, atmospheric science (including air quality, climatology, meteorology, atmospheric chemistry & 
physics, paleoclimatology)
Climate change (including carbon cycle, transportation, energy, and policy)
Sustainability and renewable energy (the interaction between human processes and ecosystems, including 
resource management, transportation, land use, agriculture and food)
Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecasting, mitigation, and adaptation, for environmental extremes and hazards)
Environmental policy and economics

www.cambridge.org/eds



Environmental Data Science 

Innovation & Inclusion Lab 

NSF’s newest data synthesis center, 
hosted by the University of Colorado Boulder & CIRES, 

with key partners CyVerse & the University of Oslo

A national accelerator linking data, discovery, & decisions
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