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Gravitational waves

★ space-time deformation propagating as a wave
★ due to large mass acceleration
★ predicted by Einstein from general relativity
★ first observed in 2015 by LIGO-Virgo interferometers
★ today: hundreds of observed events
★ most common source = merger of stellar black hole binaries
★ bivariate signal: contains two “polarizations” h+(t) and h×(t)
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Data analysis focus in the LVK collaboration
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Bivariate signal processing: polarization description

instantaneous polarization: ellipse parameters & Stokes parameters
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Bivariate signal processing: polarization description
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Bivariate signal processing: polarization description
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Recovering the GW: set up

★ GW {h(ti) = (h+(ti), h×(ti))} ∈ R2×N → TF repr. H ∈ C2×Nf ×Nt

★ obs. {y(ti)} ∈ RD×N (D detectors) → TF repr. Y ∈ CD×Nf ×Nt

★ noise nd , usually Gaussian with one PSD per detector d

★ source loc.: (δ, ϕ) ∈ S2, causes a prop. time delay τd (neglected here)

★ projection of GW onto detectors: encoded in F ∈ RD×2 matrix

yd (ti) = Fd(δ, ϕ)T h (ti) + nd(ti) or Ỹ = F̃H + Ñ, Ñ ∼ N (0, σ2I) (whitened)

Goal: Reconstruct H from Y – assume (δ, ϕ) known here (perform joint estim. in real life)

Metrics to evaluate the reconstruction: speed, R-SNR & mismatch

R-SNR = −10 log10

(
∥ĥ − h∗∥2

F
∥h∗∥2

F

)
and ε(ĥ, h∗) = min

τ∈R

[
1 − |⟨ĥτ , h∗⟩|

∥ĥ∥∥h∗∥

]
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Recovering the GW: an ill-posed inverse problem

Maximum of likelihood estimator (MLE) (in time-freq. domain)

Ĥ(MLE) = arg min − log π(Y|H)

= arg min
∑

d

∑
ωi

∑
tj

∣∣∣Ỹd ,ωi ,tj − F̃d(ωi)T H·,ωi ,tj

∣∣∣2
=⇒ Ĥ(MLE)

·,ωi ,tj = F̃(ωi)† Ỹ·,ωi ,tj , closed-form solution, fast to evaluate ✓

ill-posed problem: MLE leads to poor reconstructions due to noise
improving reconstructions: requires the choice of a prior distri. π(H)

challenge: hard to encode relevant features & need a fast optim. algo.

Our approach
use plug-and-play method: learn prior π(H) from a dataset of simulations
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The plug-and-play (PnP) approach: general idea

Minimizing the loss function − log π(H|Y) = − log π(Y|H) − log π(H)
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Minimizing the loss function − log π(H|Y) = − log π(Y|H) − log π(H)

★ one can alternate grad steps wrt likelihood and prior
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The plug-and-play (PnP) approach: general idea

Minimizing the loss function − log π(H|Y) = − log π(Y|H) − log π(H)

proximal operator: used for minimization of non-differentiable functions

prox− log π(H) = arg min
W

[
∥H − W∥2

F − log π(W)
]

at each iteration k, H(k+1) = prox− log π

(
H(k) + ε∇ log π

(
Y|H(k)

))
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The plug-and-play (PnP) approach: general idea

Minimizing the loss function − log π(H|Y) = − log π(Y|H) − log π(H)

replace prox− log π with a denoiser Dσ trained from samples of π(H)

min
θ

EH∼π(·), σ∼Unif(0,σmax), ξ∼N (0,σ2I)
[
∥Dσ(H + ξ) − H∥2

F

]
at each iteration k, H(k+1) = Dσ

(
H(k) + ε∇ log π

(
Y|H(k)

))
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The plug-and-play approach: training a signal denoiser

generated train set (2048 elements), test set (128) with
★ m1, m2 ∼ Unif(15, 30) M⊙

★ dL ∼ Unif(100, 700) Mpc
★ cos(inclination) ∼ Unif(0, 1)
★ χ1, χ2 ∼ Unif(B(0, 1)) – with B(0, 1) the 3-ball around 0 of radius 1

each GW Hk transformed with a time-frequency transform (Gabor)

PyTorch only handles real values: time-freq representation stored as

H = [Re(H+), Im(H+), Re(H×), Im(H×)]

★ use an adapted DRUNet architecture (SOTA in image processing)
★ trained on a laptop with GPU (Mac’s “metal performance shader”)
★ trained for 24h 7/15



Example of application of the denoiser: easy

clean signal
H

signal with Gaussian noise
H + ξ, ξ ∼ N (0, σ2)

denoised signal
Dσ(H + ξ)
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Example of application of the denoiser: harder

clean signal
H

signal with Gaussian noise
H + ξ, ξ ∼ N (0, σ2)

denoised signal
Dσ(H + ξ)
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Example of application of the denoiser: much harder

clean signal
H

signal with Gaussian noise
H + ξ, ξ ∼ N (0, σ2)

denoised signal
Dσ(H + ξ)
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Example of application of the denoiser: empty

clean signal
H

signal with Gaussian noise
H + ξ, ξ ∼ N (0, σ2)

denoised signal
Dσ(H + ξ)
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Application on synthetic data: observation

clean signal
H

noisy observations
Y (modulus)
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Application on synthetic data: visually
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Application on synthetic data: quantitatively

method mismatch R-SNR (dB) runtime (s)full support full support
MLE 0.328 0.123 -0.3 11.3 0.001

MAP circ 0.063 0.019 8.7 28.3 0.002
MAP PnP 0.024 0.014 13.2 31.2 2.7
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Conclusion

Summary

✓ PnP allow for the accurate reconstruction of h+ and h× from LIGO and Virgo obs data,
driven by physical models

✓ Well adapted to compact binary mergers where large sets of waveform models are
available or easily computed

✓ critically, PnP only learns prior, thus can be used with any likelihood model: Versatile!
→ can be applied readily for any noise PSD, projection matrix F or detector network!

Next steps

★ joint inference of H with sky location

★ quantify uncertainties using MCMC

★ apply to real data
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