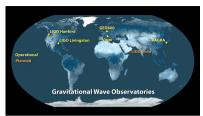
Reconstructing gravitational wave polarizations with bivariate signal processing and plug-and-play method

<u>Pierre Palud</u>¹, Eric Chassande-Mottin¹, Y. Y. Pilavci², P. Chainais², P.-A. Thouvenin²

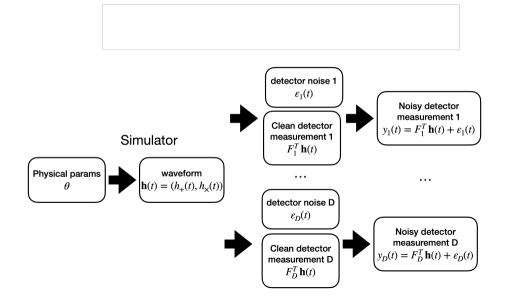
¹ APC, gravitation team, Paris ² Centrale Lille Institut, CRIStAL, Sigma team ANR RICOCHET – https://ricochet-anr.github.io

Workshop on Bayesian neural networks for comsology & time domain astrophysics - 21th May 2025 -

Gravitational waves

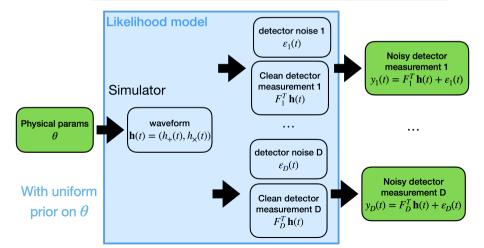


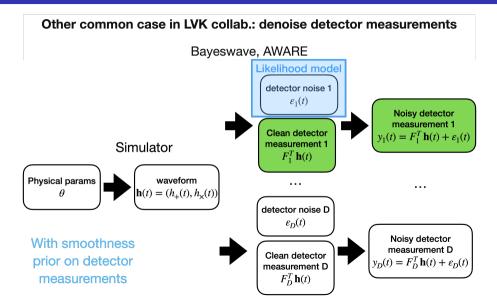
- ★ space-time deformation propagating as a wave
- ★ due to large mass acceleration
- ★ predicted by Einstein from general relativity
- ★ first observed in 2015 by LIGO-Virgo interferometers
- ★ today: hundreds of observed events
- most common source = merger of stellar black hole binaries
- **\star bivariate signal**: contains two "polarizations" $h_+(t)$ and $h_{\times}(t)$

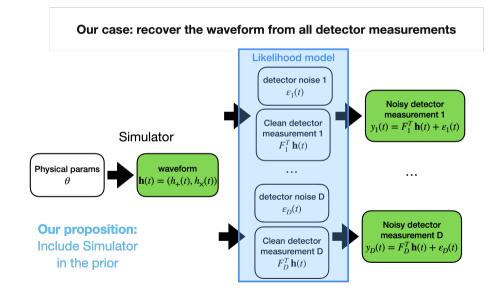


Most common case in LVK collab.: infer θ from the $\{y_d(t)\}$

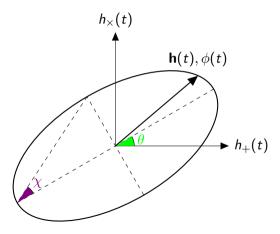
MCMC (Bilby), Neural param estimation (Dingo), etc.

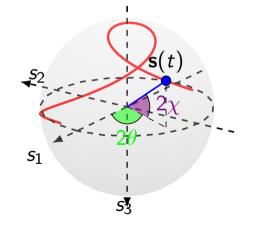


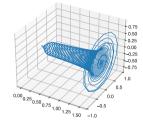


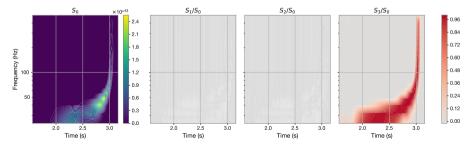


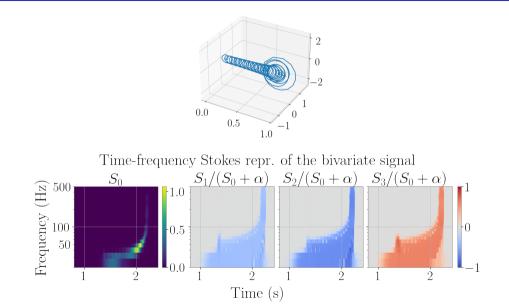
instantaneous polarization: ellipse parameters & Stokes parameters

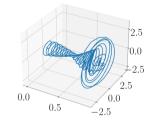


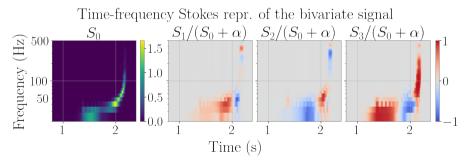












Recovering the GW: set up

★ GW
$$\{\mathbf{h}(t_i) = (h_+(t_i), h_{\times}(t_i))\} \in \mathbb{R}^{2 \times N}$$

★ obs.
$$\{\mathbf{y}(t_i)\} \in \mathbb{R}^{D \times N}$$
 (*D* detectors)

 $\begin{array}{l} \rightarrow \mathsf{TF} \text{ repr. } \mathcal{H} \in \mathbb{C}^{2 \times N_f \times N_t} \\ \rightarrow \mathsf{TF} \text{ repr. } \mathcal{Y} \in \mathbb{C}^{D \times N_f \times N_t} \end{array}$

- \star noise n_d , usually Gaussian with one PSD per detector d
- \star source loc.: $(\delta, \phi) \in \mathbb{S}^2$, causes a prop. time delay τ_d (neglected here)
- \star projection of GW onto detectors: encoded in $\mathbf{F} \in \mathbb{R}^{D imes 2}$ matrix

 $y_d(t_i) = F_d(\delta, \phi)^T \mathbf{h}(t_i) + n_d(t_i)$ or $\widetilde{\mathcal{Y}} = \widetilde{\mathbf{F}} \mathcal{H} + \widetilde{N}, \ \widetilde{N} \sim \mathcal{N}(0, \sigma^2 \mathcal{I})$ (whitened)

Recovering the GW: set up

★ GW {h(t_i) = (h₊(t_i), h_×(t_i))} ∈ ℝ^{2×N} → TF repr. H ∈ ℂ^{2×N_f×N_t}
★ obs. {y(t_i)} ∈ ℝ^{D×N} (D detectors) → TF repr. Y ∈ ℂ^{D×N_f×N_t}
★ noise n_d, usually Gaussian with one PSD per detector d
★ source loc.: (δ, φ) ∈ 𝔅², causes a prop. time delay τ_d (neglected here)
★ projection of GW onto detectors: encoded in **F** ∈ ℝ^{D×2} matrix
y_d (t_i) = F_d(δ, φ)^T h (t_i) + n_d(t_i) or
$$\tilde{Y} = \tilde{F}H + \tilde{N}, \tilde{N} ~ N(0, \sigma^2 I)$$
 (whitened)
Goal: Reconstruct H from Y – assume (δ, φ) known here (perform joint estim. in real life)

Metrics to evaluate the reconstruction: speed, R-SNR & mismatch

$$\mathsf{R}\text{-}\mathsf{SNR} = -10\log_{10}\left(\frac{\|\widehat{h} - h^*\|_F^2}{\|h^*\|_F^2}\right) \text{ and } \varepsilon(\widehat{h}, h^*) = \min_{\tau \in \mathbb{R}}\left[1 - \frac{|\langle\widehat{h}_{\tau}, h^*\rangle|}{\|\widehat{h}\|\|h^*\|}\right]$$

$$4/18$$

Recovering the GW: an ill-posed inverse problem

Maximum of likelihood estimator (MLE)

(in time-freq. domain)

$$\begin{split} \widehat{\mathcal{H}}^{(\mathsf{MLE})} &= \arg\min - \log \pi(\mathcal{Y}|\mathcal{H}) \\ &= \arg\min \sum_{d} \sum_{\omega_i} \sum_{t_j} \left| \widetilde{\mathcal{Y}}_{d,\omega_i,t_j} - \widetilde{F}_{d}(\omega_i)^T \, \mathcal{H}_{\cdot,\omega_i,t_j} \right|^2 \\ &\implies \widehat{\mathcal{H}}^{(\mathsf{MLE})}_{\cdot,\omega_i,t_i} = \widetilde{\mathbf{F}}(\omega_i)^{\dagger} \, \widetilde{\mathcal{Y}}_{\cdot,\omega_i,t_i}, \ \text{closed-form solution, fast to evaluate } \checkmark \end{split}$$

Recovering the GW: an ill-posed inverse problem

Maximum of likelihood estimator (MLE)

(in time-freq. domain)

 $\widehat{\mathcal{H}}^{(\mathsf{MLE})} = rg\min - \log \pi(\mathcal{Y}|\mathcal{H})$

$$= \arg\min \sum_{d} \sum_{\omega_i} \sum_{t_j} \left| \widetilde{\mathcal{Y}}_{d,\omega_i,t_j} - \widetilde{\mathcal{F}}_{d}(\omega_i)^T \mathcal{H}_{\cdot,\omega_i,t_j} \right|^2$$
$$\implies \widehat{\mathcal{H}}_{\cdot,\omega_i,t_j}^{(\mathsf{MLE})} = \widetilde{\mathbf{F}}(\omega_i)^{\dagger} \widetilde{\mathcal{Y}}_{\cdot,\omega_i,t_j}, \text{ closed-form solution, fast to evaluate } \checkmark$$

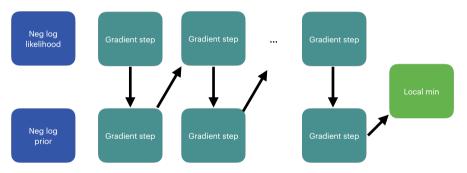
ill-posed problem: MLE leads to poor reconstructions due to noise improving reconstructions: requires the choice of a prior distri. $\pi(\mathcal{H})$ challenge: hard to encode relevant features & need a fast optim. algo.

Our approach

use plug-and-play method: learn prior $\pi(\mathcal{H})$ from a dataset of simulations

Minimizing the loss function $-\log \pi(\mathcal{H}|\mathcal{Y}) = -\log \pi(\mathcal{Y}|\mathcal{H}) - \log \pi(\mathcal{H})$

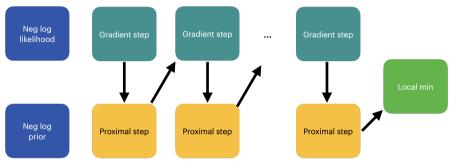
Minimizing the loss function $-\log \pi(\mathcal{H}|\mathcal{Y}) = -\log \pi(\mathcal{Y}|\mathcal{H}) - \log \pi(\mathcal{H})$



6/15

★ one can alternate grad steps wrt likelihood and prior

Minimizing the loss function $-\log \pi(\mathcal{H}|\mathcal{Y}) = -\log \pi(\mathcal{Y}|\mathcal{H}) - \log \pi(\mathcal{H})$

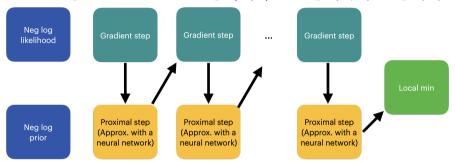


proximal operator: used for minimization of non-differentiable functions

$$\operatorname{prox}_{-\log \pi}(\mathcal{H}) = \operatorname*{arg\,min}_{\mathcal{W}} \left[\|\mathcal{H} - \mathcal{W}\|_{F}^{2} - \log \pi(\mathcal{W}) \right]$$

at each iteration k , $\mathcal{H}^{(k+1)} = \operatorname{prox}_{-\log \pi} \left(\mathcal{H}^{(k)} + \varepsilon \nabla \log \pi \left(\mathcal{Y} | \mathcal{H}^{(k)} \right) \right)$

Minimizing the loss function $-\log \pi(\mathcal{H}|\mathcal{Y}) = -\log \pi(\mathcal{Y}|\mathcal{H}) - \log \pi(\mathcal{H})$



replace prox_{$-\log \pi$} with a denoiser D_{σ} trained from samples of $\pi(\mathcal{H})$

$$\begin{split} \min_{\theta} \mathbb{E}_{\mathcal{H} \sim \pi(\cdot), \ \sigma \sim \mathsf{Unif}(0, \sigma_{\max}), \ \xi \sim \mathcal{N}(0, \sigma^{2}\mathcal{I})} \left[\| \mathcal{D}_{\sigma}(\mathcal{H} + \xi) - \mathcal{H} \|_{F}^{2} \right] \\ \text{at each iteration } k, \quad \mathcal{H}^{(k+1)} = \mathcal{D}_{\sigma} \left(\mathcal{H}^{(k)} + \varepsilon \nabla \log \pi \left(\mathcal{Y} | \mathcal{H}^{(k)} \right) \right) \end{split}$$

The plug-and-play approach: training a signal denoiser

generated train set (2048 elements), test set (128) with

- $\star~m_1,m_2\sim$ Unif(15,30) M $_{\odot}$
- $\star~d_L \sim {\sf Unif}(100,700) \; {\sf Mpc}$
- $\star \ \ \text{cos(inclination)} \sim \text{Unif}(0,1)$
- \star $\chi_1, \chi_2 \sim {\sf Unif}(B(0,1))$ with B(0,1) the 3-ball around 0 of radius 1

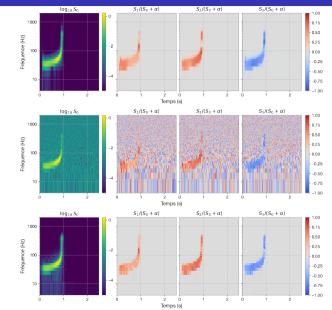
each GW \mathcal{H}_k transformed with a time-frequency transform (Gabor)

 $\operatorname{PyTORCH}$ only handles real values: time-freq representation stored as

 $\mathcal{H} = [\mathsf{Re}(\mathcal{H}_+), \mathsf{Im}(\mathcal{H}_+), \mathsf{Re}(\mathcal{H}_{\times}), \mathsf{Im}(\mathcal{H}_{\times})]$

- ★ use an adapted DRUNet architecture (SOTA in image processing)
- \star trained on a laptop with GPU (Mac's "metal performance shader")
- ★ trained for 24h

Example of application of the denoiser: easy



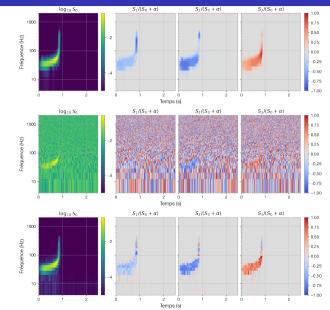
8/15

clean signal \mathcal{H}

signal with Gaussian noise $\mathcal{H} + \xi, \ \xi \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

denoised signal $D_{\sigma}(\mathcal{H} + \xi)$

Example of application of the denoiser: harder



/15

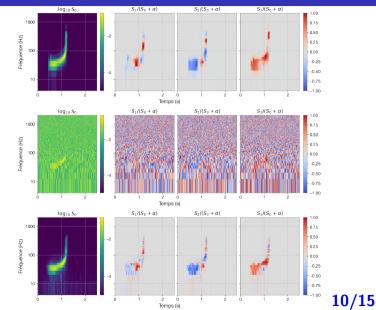
9

clean signal $\mathcal H$

signal with Gaussian noise $\mathcal{H} + \xi, \ \xi \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

denoised signal $D_{\sigma}(\mathcal{H} + \xi)$

Example of application of the denoiser: much harder

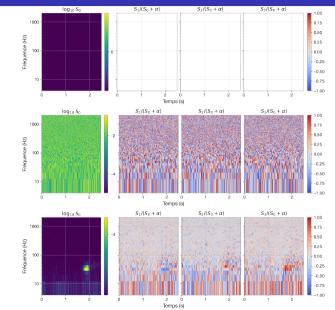


clean signal $\mathcal H$

signal with Gaussian noise $\mathcal{H} + \xi, \ \xi \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

denoised signal $D_{\sigma}(\mathcal{H} + \xi)$

Example of application of the denoiser: empty



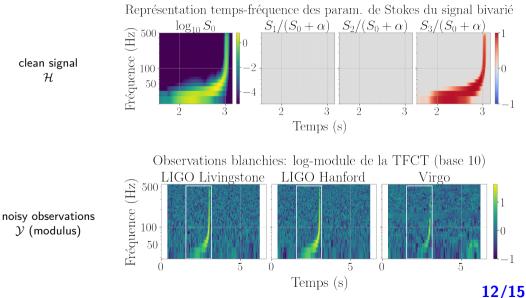
11/15

clean signal \mathcal{H}

signal with Gaussian noise $\mathcal{H} + \xi, \ \xi \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

denoised signal $D_{\sigma}(\mathcal{H} + \xi)$

Application on synthetic data: observation



Application on synthetic data: visually



mismatch		R-SNR (dB)		runtime (s)
full	support	full	support	runtime (s)
0.328	0.123	-0.3	11.3	0.001
0.063	0.019	8.7	28.3	0.002
0.024	0.014	13.2	31.2	2.7
	full 0.328 0.063	fullsupport0.3280.1230.0630.019	fullsupportfull0.3280.123-0.30.0630.0198.7	fullsupportfullsupport0.3280.123-0.311.30.0630.0198.728.3

Summary

✓ PnP allow for the accurate reconstruction of h_+ and h_{\times} from LIGO and Virgo obs data, driven by physical models

 \checkmark Well adapted to compact binary mergers where large sets of waveform models are available or easily computed

✓ critically, PnP only learns prior, thus can be used with any likelihood model: Versatile! → can be applied readily for any noise PSD, projection matrix **F** or detector network!

Next steps

- \star joint inference of ${\cal H}$ with sky location
- ★ quantify uncertainties using MCMC
- \star apply to real data