



# Bayesian inverse problem with scattering transform : application to instrumental decontamination

#### Sébastien Pierre Erwan Allys, Alexandros Tsouros 22/05/2025







## Bayesian inverse problems

- We observe a data  $d_0 = f(s_0)$  with  $s_0$  signal of interest
- *f* probabilistic forward model, assumed known



- Only one observational data  $d_0$  and no external prior model of s
- Ideal goal : find  $s_0$  but no single solution for stochastic f
- Ill posed problem : need for a Bayesian formulation  $\rightarrow p(s \mid d_{obs})$

## Scattering transform statistics

- Scattering transform (ST) statistics  $\phi(s)$ : non-Gaussian and multi-scale statistics
- Can be efficiently estimated from a single image



- Wavelet filters separating the different scales
- Coupling between scales with non-linearities

### Generative models from ST statistics

- Ability to construct and sample maximum entropy models from ST statistics
- Parametrised by  $\mu_s = \mathbb{E}_{s \sim p(s)}[\phi(s)]$



Realistic non-Gaussian models from  $O(10^2)$  coefficients

#### Generative models from ST statistics

- Ability to construct and sample maximum entropy models from ST statistics
- Parametrised by  $\mu_s = \mathbb{E}_{s \sim p(s)}[\phi(s)]$

$$p(s) \to s_0 \xrightarrow{\text{estimation}} \mu_s \simeq \phi(s_0) \to p_{\phi(s_0)}^{m.e.} \xrightarrow{\text{sample}} \tilde{s}$$



**Recovers power spectrum and PDF** 

#### Generative models from ST statistics

- Ability to construct and sample maximum entropy models from ST statistics
- Parametrised by  $\mu_s = \mathbb{E}_{s \sim p(s)}[\phi(s)]$

$$p(s) \to s_0 \xrightarrow{\text{estimation}} \mu_s \simeq \phi(s_0) \to p_{\phi(s_0)}^{m.e.} \xrightarrow{\text{sample}} \tilde{s}$$



**Recovers Minkowski functionals** 

## Forward model

- Idea: target  $\mu_{s_0}$  instead of  $s_0 \rightarrow p(\mu_s \mid d_0)$
- Also describe  $d_0$  by its ST statistics  $\rightarrow$  **Goal** :  $p(\mu_s \mid \phi(d_0))$
- Full forward model :

$$\mu_s \to p_{\mu_s} \to s \to f(s) = d \to \phi(d)$$



## **Bayesian formulation**

- Parameter space :  $\mu_s$  data space :  $\phi(d)$
- $p(\mu_s \mid \phi(d)) \propto p(\phi(d) \mid \mu_s) p(\mu_s)$
- Uninformative prior in scattering space
- SBI for the likelihood ?
  - Unstructured space of dimension  $O(10^2)$
  - Challenging setting to train a Normalising Flow
- Postulate a closed form for the likelihood  $p(\phi(d) \mid \mu_s) = \mathcal{N}(A\mu_s + b, \Sigma)$ 
  - Linked to a Taylor expansion
  - Need to estimate A, b and  $\Sigma$
  - Use a proposal distribution  $q(\mu_s)$

## **Proposal distribution**

- Requirement for  $q(\mu_s)$ :
  - Localised in scattering space
  - Take into account the correlation between ST coefficients
- Previous approximate solutions based on GD
  - Biased
  - Not enough variability
- Fit a gaussian to the  $\tilde{s}$  and rescale it  $q(\mu_s) = \mathcal{N}(\rho, \alpha \Gamma)$ 
  - Need to cover the high-likelihood region
  - Check that inference is not driven by  $\alpha$



## Posterior distribution $p(\mu_s \mid \phi(d))$

• With the proposal distribution we are able to estimate A, b and  $\Sigma$ 



• Likelihood  $p(\phi(d) \mid \mu_s) \sim \mathcal{N}(A\mu_s + b, \Sigma)$ 

Posterior distribution  $p(\mu_s \mid \phi(d)) \propto \mathcal{N}(A\mu_s + b, \Sigma)p(\mu_s) = q(\mu_s)\mathcal{N}(A\mu_s + b, \Sigma)\frac{p(\mu_s)}{q(\mu_s)}$ 

• Multi-round estimation of A, b and  $\Sigma$ 

- Setting:
  - Only one observed data  $d_0$
  - No prior model for *s*
  - Know the forward function f (and quick to evaluate)
- Modelling hypothesis :
  - *s* well described by a maximum entropy model conditioned by ST statistics
  - Likelihood function modelled as  $p(\phi(d) \mid \mu_s) = \mathcal{N}(A\mu_s + b \mid \Sigma)$

----- Posterior distribution  $p(\mu_s \mid \phi(d_0))$  of scattering statistics of s

And by sampling  $\tilde{s}$  from  $\mu_s$  of any other statistics



• Proof of concept on 256\*256 LSS maps and instrumental contamination



#### true signal



#### observed data



#### Posterior Samples



#### Posterior predictive Check



posterior d-s MAP 106 Power Spectrum P(k) 10<sup>5</sup>  $10^{4}$ 100 10<sup>1</sup> 10<sup>2</sup>

#### Power Spectra with Confidence Intervals

posterior  $10^{-1}$ MAP Probability Density Function (PDF) 10-2 10-3  $10^{-4}$ 10-5  $10^{-6}$ -8 -6 -4-2 2 6 8 0 4 **Pixel Intensity** 

#### PDF of Pixel Intensities with Confidence Intervals



## Conclusion

- Challenging setting : one data and no external prior model for s
- Applicable to a lot of other data than LSS
- Recover a posterior of ST statistics of *s* and other usual astrophysical statistics
- Computationally expensive  $\simeq$  10 hours H100 GPU (work in progress)

#### **Proposal distribution**

• Use the data and the algorithm from Régaldo+21 to get multiple estimation  $\tilde{s}$  of  $s_{truth}$ 

Gradient descent in pixel space to minimise the objective  $||\phi(f(\tilde{s})) - \phi(d_{obs})||^2$ 

• Fit a the proposal distribution  $q(\mu_s)$  as a gaussian distribution over these estimations  $q(\mu_s) = \mathcal{N}(\rho, \Gamma)$  and scale the covariance to cover as much as possible the high likelihood region



