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Bayesian inverse problems 
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• Only one observational data  and no external prior model of  

• Ideal goal : find   but no single solution for stochastic f 

• Ill posed problem : need for a Bayesian formulation  

d0 s

s0

→ p(s ∣ dobs)

• We observe a data  with  signal of interest 

•   probabilistic forward model, assumed known 

d0 = f(s0) s0

f



Scattering transform statistics
• Scattering transform (ST) statistics  : non-Gaussian and multi-scale statistics 

• Can be efficiently estimated from a single image

ϕ(s)

3

• Wavelet filters separating the different scales 

• Coupling between scales with non-linearities



Generative models from ST statistics

μs → pμs
→ s → f (s) = d → ϕ(d )
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• Ability to construct and sample maximum entropy models from ST statistics 

• Parametrised by μs = 𝔼s∼p(s)[ϕ(s)]

p(s) s0
es'ma'on μs ≃ ϕ(s0) → pm.e.

ϕ(s0)
sample s̃

Realistic non-Gaussian models from  coefficientsO(102)



Generative models from ST statistics
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• Ability to construct and sample maximum entropy models from ST statistics 

• Parametrised by μs = 𝔼s∼p(s)[ϕ(s)]

Recovers power spectrum and PDF

p(s) s0
es'ma'on μs ≃ ϕ(s0) → pm.e.

ϕ(s0)
sample s̃



Generative models from ST statistics
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• Ability to construct and sample maximum entropy models from ST statistics 

• Parametrised by μs = 𝔼s∼p(s)[ϕ(s)]

Recovers Minkowski functionals

p(s) s0
es'ma'on μs ≃ ϕ(s0) → pm.e.

ϕ(s0)
sample s̃



Forward model
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• Idea : target  instead of    

• Also describe  by its ST statistics  Goal :  

• Full forward model :  

μs0
s0 → p(μs ∣ d0)

d0 → p(μs ∣ ϕ(d0))

μs → pμs
→ s → f(s) = d → ϕ(d)

μs =

μs1

μs2

μs3

⋮
μsn

Synthesis Contamination Compression

ϕ1(d)
ϕ2(d)
ϕ3(d)

⋮
ϕn(d)

= ϕ(d)



Bayesian formulation
• Parameter space :  — data space :  

•  

• Uninformative prior in scattering space  

• SBI for the likelihood ?  

• Postulate a closed form for the likelihood  

μs ϕ(d)

p(μs ∣ ϕ(d)) ∝ p(ϕ(d) ∣ μs)p(μs)

p(ϕ(d) ∣ μs) = 𝒩(Aμs + b, Σ)
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• Unstructured space of dimension  

• Challenging setting to train a Normalising Flow  

O(102)

• Linked to a Taylor expansion 

• Need to estimate  and  

• Use a proposal distribution  

A, b Σ

q(μs)



Proposal distribution 
• Requirement for  :  

• Previous approximate solutions based on GD 

• Fit a gaussian to the  and rescale it  

q(μs)

s̃ q(μs) = 𝒩(ρ, αΓ)
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• Localised in scattering space 

• Take into account the correlation 
between ST coefficients 

• Biased 

• Not enough variability 

• Need to cover the high-likelihood region 

• Check that inference is not driven by  α



Posterior distribution  p(μs ∣ ϕ(d))
• With the proposal distribution we are able to estimate  and  

• Likelihood   

• Posterior distribution  

• Multi-round estimation of  and  

A, b Σ

p(ϕ(d) ∣ μs) ∼ 𝒩(Aμs + b, Σ)

p(μs ∣ ϕ(d)) ∝ 𝒩(Aμs + b, Σ)p(μs) = q(μs)𝒩(Aμs + b, Σ)
p(μs)
q(μs)

A, b Σ
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μs =

μs1

μs2

μs3

⋮
μsn

∼ q(μs)
Synthesis Contamination Compression

ϕ1(d)
ϕ2(d)
ϕ3(d)

⋮
ϕn(d)

= ϕ(d)



Results
• Setting :  

• Modelling hypothesis  :  

• Only one observed data  

• No prior model for  

• Know the forward function   (and quick to evaluate) 

•  well described by a maximum entropy model conditioned by ST statistics 

• Likelihood function modelled as 

d0

s

f

s

p(ϕ(d) ∣ μs) = 𝒩(Aμs + b ∣ Σ)

Posterior distribution  of scattering statistics of s p(μs ∣ ϕ(d0))
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And by sampling  from  of any other statisticss̃ μs



Results
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• Proof of concept on 256*256 LSS maps and instrumental contamination



Results
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Results
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Results
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Conclusion

• Challenging setting : one data and no external prior model for  

• Applicable to a lot of other data than LSS 

• Recover a posterior of ST statistics of  and other usual astrophysical statistics 

• Computationally expensive  10 hours H100 GPU (work in progress) 

s

s

≃
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Proposal distribution
• Use the data and the algorithm from Régaldo+21 to get multiple estimation  of  

• Fit a the proposal distribution  as a gaussian distribution over these estimations 
 and scale the covariance to cover as much as possible the high likelihood region   

s̃ struth

q(μs)
q(μs) = 𝒩(ρ, Γ)

18

Gradient descent in pixel space to minimise the objective ∣ ∣ ϕ( f (s̃)) − ϕ(dobs) ∣ ∣2


