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Bayesian inverse problems

* Weobserve adatad, = f(sy) with s, signal of interest

f probabilistic forward model, assumed known

true signal + psf + psf + noise + psf + noise + masks

Only one observational data d and no external prior model of s

|deal goal : find s, but no single solution for stochastic f

Il posed problem : need for a Bayesian formulation — p(s | d ;)



Scattering transform statistics

* Scattering transform (ST) statistics ¢(s) : non-Gaussian and multi-scale statistics

* (Can be efficiently estimated from a single image

* Wavelet filters separating the different scales

* Coupling between scales with non-linearities



Generative models from ST statistics

* Ability to construct and sample maximum entropy models from ST statistics

e Parametrised by y, = [ESNp(s)[¢(S)]

estimation sample _
p(s) = 5o > Uy = P(Sp) — pd’?(;') ——§
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Realistic non-Gaussian models from O(10?) coefficients



Generative models from ST statistics

* Ability to construct and sample maximum entropy models from ST statistics

e Parametrised by u, = [ESNp(S)[qb(S)]
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Generative models from ST statistics

* Ability to construct and sample maximum entropy models from ST statistics

e Parametrised by u, = [ESNp(S)[qb(S)]

(5) > s estimation o\ me sample :
— > g = P(sp) o —
p 0 Hs 0) = Po(sy)
Minkowski Functionals with Confidence Intervals
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Forward model

» ldea:target yi, instead of s, — p(u, | dy)

* Also describe d by its ST statistics = Goal: p(u, | ¢(d,))

* Full forward model:
= Py = 5 = f8) = d > $(d)

sample from p,, after contamination

s, b(d)
/’lsz Synthesis Contamination il Compression ¢2(d)

po= [Hs| — — — | $@) | = ¢d)
P b(d)




Bayesian formulation

* Parameter space: y, — data space: ¢(d)

plug | p(d)) o p(p(d) | u)p(py)

Uninformative prior in scattering space

SBI for the likelihood ?

e Unstructured space of dimension O(10?)

* Challenging setting to train a Normalising Flow

Postulate a closed form for the likelihood p(¢(d) | u,) = NV (Au, + b, %)

* Linked to a Taylor expansion
e Needtoestimate A, band X

* Use a proposal distribution g ()



Proposal distribution

* Requirement for g(u,):
* Localised in scattering space

P
* Take into account the correlation . - &39\ 000064 NZ;’“
between ST coefficients X appioscomall samls 3
* Previous approximate solutions based on GD - #(p, M)
- VU’ (Pi o F)
* Biased
* Not enough variability
* Fitagaussiantothe §andrescaleit g(u,) = A4 (p,al’)
o \_—‘\\_’—D
* Need to cover the high-likelihood region P

* Check that inference is not driven by o



Posterior distribution p(u, | ¢(d))

* With the proposal distribution we are able to estimate A, b and X

sample from p,, after contamination

s, b1(d)
,Ltsz Synthesis Contamination [ Compression ¢2(d)

o= | s ~ ) ——s — N k@] = 0@
_/’tsn_ _¢n(d)_

* Likelihood p(¢(d) | u,) ~ N (Au,+ b, X)

p(uy)

. Posterior distribution p(y, | ¢(d)) o< N (Au, + b, Z)p(p,) = q(pu) N (Ap, + b, %) D
q (K

* Multi-round estimation of A, b and X
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Results

* Setting:
* Only one observed data d,,
* No prior model for s
* Know the forward function f (and quick to evaluate)
* Modelling hypothesis :
* swelldescribed by a maximum entropy model conditioned by ST statistics

* Likelihood function modelled as p(¢(d) | u,) = N (Ap,+ b | )

— Posterior distribution p(y, | ¢(d,))) of scattering statistics of s

And by sampling § from p of any other statistics

11



Results

* Proof of concept on 256*256 LSS maps and instrumental contamination

true signal contaminated observation MAP synthesis
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Results

true signal

observed data

Posterior Samples

Posterior predictive Check
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Results

Power Spectrum P(k)
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Results

PDF of Pixel Intensities with Confidence Intervals
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Conclusion

* Challenging setting : one data and no external prior model for s
* Applicable to a lot of other data than LSS
* Recover a posterior of ST statistics of s and other usual astrophysical statistics

* Computationally expensive ~ 10 hours HIOO GPU (work in progress)
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Proposal distribution

* Use the data and the algorithm from Régaldo+21 to get multiple estimation s of s, ,;,
Gradient descent in pixel space to minimise the objective | | ¢(f(5)) — ¢(d ) | ?

* Fitathe proposal distribution g(u,) as a gaussian distribution over these estimations
q(u,) = N (p,I') and scale the covariance to cover as much as possible the high likelihood region
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