

Accounting for Selection Effects in Supernova Cosmology with Simulation-Based Inference and Hierarchical Bayesian Modelling

Ben Boyd

Supervisors: Kaisey Mandel & Matthew Grayling in collaboration with: Ayan Mitra, Gautham Narayan, Richard Kessler & Stephen Thorp

• We have to use observable properties:

• We have to use observable properties:

Tripp Formula: $m_s = \mu_s(z_s | \Omega_{m0}, w_0) + M_0 + M_0$

• We have to use observable properties:

Tripp Formula: $m_s = \mu_s(z_s | \Omega_{m0}, w_0) + M_0 + \alpha x_s + \beta c_s$

• We have to use observable properties:

Tripp Formula:
$$m_s = \mu_s(z_s | \Omega_{m0}, w_0) + M_0 + \alpha x_s + \beta c_s$$

• We have to use observable properties:

The effect of Malmquist Bias

(Kessler & Scolnic 2017)

(Kessler & Scolnic 2017)

(Kessler & Scolnic 2017)

(Kessler & Scolnic 2017)

(Kessler & Scolnic 2017)

- + Uses realisticsurveysimulations
- Assumes fiducial cosmology to correct distances
- Uses unphysical binning

7

Method 2: Analytical Function Approach

(*Rubin et al. 2015, March et al. 2018, Hinton et al. 2019*) Assume the probability of selection is a known analytical

Method 2: Analytical Function Approach

(*Rubin et al. 2015, March et al. 2018, Hinton et al. 2019*) Assume the probability of selection is a known analytical

Method 2: Analytical Function Approach

(Rubin et al. 2015, March et al. 2018, Hinton et al. 2019)

Assume the probability of selection is a known analytical

Which distribution to model $d_s = (m_s, c_s, x_s)$ with SBI? $\theta = (\Omega_{m0}, w_0, M_0, \alpha, \beta, \ldots)$ Bayes' Theorem $P(\theta | \{d_s\}) \propto P(\{d_s\} | \theta) P(\theta)$ 20

Which distribution to model
with SBI?
$$d_s = (m_s, c_s, x_s)$$

 $\theta = (\Omega_{m0}, w_0, M_0, \alpha, \beta, ...)$ $P(\theta | \{d_s\}) \propto P(\{d_s\} | \theta) P(\theta)$
 \bigvee
We could model these

But:

- High dimensional so difficult to learn
- Would need to train a new neural network for each cosmology tested

Which distribution to model $d_{s} = (m_{s}, c_{s}, x_{s})$ with SBI? $\theta = (\Omega_{m0}, w_0, M_0, \alpha, \beta, \ldots)$ Bayes' Theorem $P(\theta | \{d_s\}) \propto P(\{d_s\} | \theta) P(\theta)$ N_{SN} $= \left[\prod_{s \in \Theta} P(d_s | \theta) \right] P(\theta)$ s=1

What will we use to learn the distribution? Normalising Flows:

- Transforms a simple Gaussian distribution into a complex distribution.
- The transforms are learnt with a neural network by maximising the log likelihood.

Validation Test

What do we need to learn?

What do we learn?

What do we learn?

Adapted from Boyd et al. (2024)

Scalable to Future Spectroscopic Samples

- The normalising flow can marginalise over latent variables allowing is to scale better than regular HBM approaches
- Consistent results with 50,000 SN takes under an hour on GPU

Train on State-of-the-art SNANA Simulations

Test on State-of-the-art SNANA Simulations

Boyd et al. (2025, in prep)

(Kessler et al. 2009 SNANA)

Future Work: Dust and Mass-Step

 $P(\hat{\boldsymbol{d}}_s | z_s, \boldsymbol{\Theta}_{\mathrm{SN}}, \Omega_{m0}, w_0)$

We can include dust/mass-step parameters in the likelihood:

$$\Theta_{\rm SN} = (\alpha, \beta, E_s, R_V, \Delta M, ...)$$

Modular Extensions: Tomographic Cosmology

40

(see Karchev & Trotta 2024)

$$P(\hat{\boldsymbol{d}}_s | z_s, \boldsymbol{\Theta}_{\mathrm{SN}}, \Omega_{m0}, w_0) \times P(z_s | \Omega_{m0}, w_0, \zeta_{\mathrm{rate}})$$

Modular Extensions: Tomographic Cosmology

(see Karchev & Trotta 2024)

$$P(\hat{\boldsymbol{d}}_s | z_s, \boldsymbol{\Theta}_{\mathrm{SN}}, \Omega_{m0}, w_0) \times P(z_s | \Omega_{m0}, w_0, \zeta_{\mathrm{rate}})$$

Modular Extensions: Tomographic Cosmology

Modular Extensions: Photometric Redshifts

 $P(\hat{\boldsymbol{d}}_s | z_s, \boldsymbol{\Theta}_{\mathrm{SN}}, \Omega_{m0}, w_0) \times P(z_s | \Omega_{m0}, w_0, \zeta_{\mathrm{rate}}) \times P(\hat{z}_s | z_s)$

Modular Extensions: Photometric Redshifts

 $P(\hat{\boldsymbol{d}}_s | z_s, \boldsymbol{\Theta}_{\mathrm{SN}}, \Omega_{m0}, w_0) \times P(z_s | \Omega_{m0}, w_0, \zeta_{\mathrm{rate}}) \times P(\hat{z}_s | z_s)$

Can also include photometric redshift likelihood as we move towards LSST

Summary:

- We have developed a flexible method that can learn intractable likelihoods that account for Malmquist bias.
- These are quick to learn and low dimensional.
- We can then use these learnt likelihoods in our hierarchical Bayesian analysis for constrains on different cosmological models.

What is a Hierarchical Bayesian Model?

$$P(\theta | \{d_s\}) \propto P(\{d_s\} | \theta) P(\theta)$$

$$= \left[\prod_{s=1}^{N} P(d_s | \theta)\right] P(\theta)$$

$$= \left[\prod_{s=1}^{N} P(d_1^s | \gamma_1^s, y_s, Z) P(d_2^s | \gamma_2^s, y_s, Z)\right]$$

$$\times P(\gamma_1^s) P(\gamma_2^s) P(y_s) P(Z)$$

$$Graphical Model Example 47$$

Full Model likelihood:

$$P(\hat{d}_{s}|\theta) = N(\hat{d}_{s}|d_{s},W_{s})$$

$$N(m_{s}|\mu_{s}(z_{s}|\Omega_{m0},w_{0}) + M_{0} + \alpha x_{s} + \beta c_{s},\sigma_{int}^{2})$$

$$N(c_{s}|c_{0} + \alpha_{c} x_{s},\sigma_{c}^{2}) N(x_{s}|x_{0},\sigma_{x}^{2})$$

$$\Phi\left(selection|\frac{m_{cut} - (\hat{m}_{s} + a\hat{x}_{s} + b\hat{c}_{s})}{\sigma_{cut}}\right)$$

Where $\hat{d}_s = (\hat{m}_s, \hat{c}_s, \hat{x}_s)$ $d_s = (m_s, c_s, x_s)$

W_s is the LC summary measurement covariance matrix

Using the same likelihood for different cosmological models

The reason we can use the same data likelihood for different cosmologies without retraining/redefining is because \hat{m}_s is conditionally independent from $\mu_s(z_s | C)$, so we can write:

$$P(\hat{m}_{s} \mid \mu_{s}(z_{s} \mid C) + M_{0}) = P(\hat{m}_{s} \mid m_{0}) P(m_{0} \mid \mu_{s}(z_{s} \mid C) + M_{0})$$

Where $P(m_0 = \mu_s(z_s | C) + M_0) = 1$ so is a deterministic function. This means we only need to give the likelihood the latent observed apparent magnitude and not the cosmological parameters directly.

f needs to be:

- Bijective
- Easily invertible
- Continuously differentiable.

 $q_{\boldsymbol{\phi}}(\mathbf{x} \mid \boldsymbol{\theta}) = \mathcal{N}(\mathbf{z}_{0} \mid \mathbf{0}, \mathbf{I}) \prod_{k} \left| \det\left(\frac{\partial f_{k}}{\partial \mathbf{z}_{k-1}}\right) \right|^{-1}$ $\hat{p}(\boldsymbol{\theta} \mid \mathbf{x}_{o}) \propto q_{\boldsymbol{\phi}}(\mathbf{x}_{o} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}),$

[4] C. E. G. Tabak and E. Vanden-Eijnden, "Density estimation by dual ascent of the log-likelihood," Communications in Mathematical Sciences, vol. 8, no. 1, pp. 217–233, 2010. 51

Masked Autoregressive Flow

Papamakarios et al. (2017)

- Masked Autoregressive Flows (MAFs) chain together a series of MADE blocks that slowly transforms a simple multivariate distribution into a complex distribution.
- MADE blocks use clever architectures where each dimension is dependent on the previous dimension.
- This makes the Jacobian lower triangular, allowing the determinant of the transform to be be computed easily.

Masked Autoencoder for Distribution Estimation (MADE). *Germain et al. (2015)*

Survey Simulation Analysis Comparing SBI and BBC

Type la Supernovae:

- Thermonuclear explosions from a binary system involving at least one white dwarf.
- Easy to identify (spectroscopically) with their distinctive silicon absorption feature.
- Light curves are remarkably consistent meaning we can standardise them to use for distances!

