Bayesian Neural Networks and supernova classification

Anais Möller

ARC DECRA Fellow & Lecturer

Australian Government

Australian Research Council

May 19, 2025 Bayesian Deep Learning for Cosmology and Time Domain Astrophysics

Time-domain

A. Möller | amoller@swin.edu.au

Generational leap

Generational leap

Vera C. Rubin Observatory

- Cerro Pachón, Chile
- Telescope: 8.4m diameter mirror
- World's largest CCD camera
 - 3.2 Gpixel camera
 - 0.2"/pixel
- Filters *ugrizy* (320-1050nm)
- Field of View: 9.6 deg²

Filter	Single exposure	10-year
u	23.9	26.1
g	24.5	27.4
r	24.7	27.5
i	24.0	26.8
Z	23.3	26.1
У	22.1	24.9

5-sigma point source depth

LSST Corporation

like

LSST

- 10 years
- WFD + 5 Deep drilling fields
- $m_r \approx 24.7 \text{ mag}$

- WFD + 5 Deep drilling fields

Credits: E. Bellm **Observation** Template Public data! Transients and variables 10 million/night Differenc 30 flux 20 10 0 25 50 days Ingested, enriched, filtered by ١K fink-portal.org See Julien Peloton's talk Tuesday!

LSST

- 10 years

- $m_{\rm r} \approx 24.7 \, {\rm mag}$

LSST

- 10 years
- WFD + 5 Deep drilling fields
- $m_r \approx 24.7 \text{ mag}$

Supernova survey

- 5 years
- 10 Deep drilling fields
 - *m* ≈ 23.5-24.5 mag

LSST

>1 million SN la

Supernova survey

>2.000 high-quality SN Ia

billions of detected objects

30.000 live transients (TiDES)

Frohmaier et al. 2025

30.000 SN candidates

425 spectroscopically SN Ia Smith, D'Andrea, Sullivan, AM et al. 2018

A. Möller | amoller@swin.edu.au

Photometric classification

Time-series in astrophysics

Time

Light-curves

- Irregularly sampled
- Subject to weather conditions
- Partial information (e.g. photometry vs spectra)
- Only a small subset of events have been properly characterised...

Supernovae

- used for cosmology for precision statistical analyses
- extragalactic transient
- different types: la, corecollapse, peculiar...

"Traditional classification"

Möller et al. 2020 **GitHub**: supernnova/SuperNNova

- Recurrent Neural Networks (RNNs):
 - LSTM
 - GRU
- Bayesian RNNs
 - MC dropout (Gal+2016)
 - Bayes by Backprop (Fortunato+2017)
 - SWA-G (Maddox+2019)
- Convolutional NN

Performance depends on training

High accuracy >98%

- with or without redshift information Second Complete or partial light-curves
- Needs large simulations for training

NNs robust?

Calibration = Reliability diagrams

De Groot+ 1983, Niculezcu-Mizil+ 2005, Guo+ 2017

Calibration = Reliability diagrams

De Groot+ 1983, Niculezcu-Mizil+ 2005, Guo+ 2017

Mean predicted probability

DES 5-year SNIa

NNs interpretable?

Lack of knowledge about the truth...

• Aleatoric

"due to the random nature of the way the observed objects are created and the way we make observations."

"cannot be reduced through greater understanding"

uncertainties in the input data, e.g. noise or other effects of data acquisition

• Epistemic

"lack of knowledge about *underlying model of the data* as well as the *form of the neural network*, the *way it is trained*, the choice of *cost function* used to characterise how well the network performs, etc"

> ignorance about the model that generated the classification

- non-representative training sets
- finding/rejecting unknowns (anomalies, OOD)
- Rigorous ML: bias-free, meaningful uncertainties

Epistemic

"lack of knowledge about *underlying model of the data* as well as the *form of the neural network*, the *way it is trained*, the choice of *cost function* used to characterise how well the network performs, etc"

> ignorance about the model that generated the classification

Physicists:

Epistemic uncertainties: express our <u>ignorance about the model</u> that generated the data.

Bayesian deep learning

$$NLL = \min_{\mathbf{w}} \sum_{i=1}^{N} -\log \mathscr{P}(\mathbf{y}_i | \mathbf{x}_i, \mathbf{w})$$

$$\mathscr{P}(\mathbf{y} \,|\, \mathbf{x}) = \int \mathscr{P}(\mathbf{y} \,|\, \mathbf{x}, \mathbf{w}) \mathscr{P}\left(\mathbf{w} \,|\, \mathscr{D}\right) d\mathbf{w}$$

Distribution of weights

$$\mathcal{P}(\mathbf{y} \mid \mathbf{x}) = \int \mathcal{P}(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) \mathcal{P}(\mathbf{w} \mid \mathcal{D}) d\mathbf{w}$$

Posterior is intractable for deep NNs

$$\mathcal{P}(\mathbf{y} \mid \mathbf{x}) = \int \mathcal{P}(\mathbf{y} \mid \mathbf{x}, \mathbf{w}) \mathcal{P}(\mathbf{w} \mid \mathcal{D}) d\mathbf{w}$$

Posterior is intractable for deep NNs

 $\mathscr{P}(\mathbf{w} \,|\, \mathscr{D}) pprox q(\mathbf{w} \,|\, \theta)$ variational distribution

Training minimisation

$$\hat{\theta} = \min_{\theta} \mathbf{KL} \left(q(\mathbf{w} | \theta) | | \mathscr{P}(\mathbf{w} | \mathscr{D}) \right)$$

BNNs Variational Inference

Approximating the variational distribution

2. Bayes by Backprop *Fortunato*+ 2017

 $q(\mathbf{w}|\theta)$

1. MC dropout Gal & Ghahramani 2016

Other methods in literature e.g. SWA-G (Maddox+2019), Flipout (Wen+2018)

Some examples in literature

Walmsley+ 2020

- Bayes by Backprop Fortunato+ 2017
- SN classification: Möller+ 2020
- SWA-G Maddox+2019
- Planetary regression: RNN Cranmer+2021

- MC Dropout Gal & Ghahramani 2016
- Regression:
 - Strong lensing: Perreault Levasseur+ 2017
 - 21cm regression: Hortúa+2020
 - Stellar ages: Weaver+2024
 - CC SN GW: Nunes+2024
 - AGN properties; Tien+2025
 - Galaxies properties: Ginolfi+2024
- Classification
 - Galaxy: AL+CNN Walmsley+ 2020
 - SN Möller+ 2020

BNNs for classification

A. Möller | amoller@swin.edu.au

"meaningful classification uncertainties"

Out-of-distribution events (anomalies)

Training set representativity

With simulations

training set

to classify

training set

to classify

A. Möller | amoller@swin.edu.au

41

Distribution of predictions

"an increase in average classification uncertainties for these anomalies" For both MC dropout and BBB (although different amplitudes)

Metrics

Entropy (Fortunato+ 2017) $H_m[\mathcal{D}_t] = \sum_{i=1}^N p_m(\mathbf{y}_i | \mathbf{x}_i) log\left(\frac{1}{p_m(\mathbf{y}_i | \mathbf{x}_i)}\right).$

$$\Delta H = \overline{H_{m_1}}[\mathcal{D}_t] - \overline{H_{m_2}}[\mathcal{D}_t] \quad or = \overline{H_m}[\mathcal{D}_{t_1}] - \overline{H_m}[\mathcal{D}_{t_2}].$$

OOD should show high entropy compared to non-OOD

- Tagged datasets are small ~thousands of supernovae and are biased
- Simulations are usually used for training and benchmarking

- Tagged datasets are small ~thousands of supernovae and are biased
- Simulations are usually used for training and benchmarking

accuracy decreases ! Lochner+ 2016, Charnock+2017

accuracy changes slightly (<prob> are not the most indicative)

Probability

non-representative models give larger uncertainties!

Prospects for Rubin

(i) can BNN uncertainties be used as an indicator of the **representativity of the training set** for a given data set?

(ii) can BNN uncertainties replace selection cuts?

With data

2 orders magnitude uncertainty increase!

SNIa data

Representativity + OOD

Representativity + OOD

Representativity + OOD

Replace selection cuts?

BNNs can provide classification uncertainties for time-domain

Should we use these uncertainties for cosmology? Not yet...

- OOD and lack of training set representativity can be reflected
- Some behaviours are unexpected!
- It is hard to know if an uncertainty is "calibrated"

But the uncertainties can be insightful for large dataset analysis!