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Generational leap
Credit: SKAO
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Vera C. Rubin Observatory
•Cerro Pachón, Chile


•Telescope: 8.4m diameter mirror 


•World’s largest CCD camera


•3.2 Gpixel camera 


•0.2”/pixel


•Filters ugrizy (320-1050nm) 


•Field of View: 9.6 deg2 

40 x
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Filter Single 
exposure 10-year

 u 23.9 26.1

 g 24.5 27.4

 r 24.7 27.5

i 24.0 26.8

z 23.3 26.1

y 22.1 24.9

5-sigma point source depth

SDSS

Rubin 
like

LSST Corporation
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LSST 
- 10 years

- WFD  + 5 Deep drilling fields

- 𝑚r ≈ 24.7 mag
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flu
x

LSST 
- 10 years

- WFD  + 5 Deep drilling fields

- 𝑚r ≈ 24.7 mag

Transients and variables

10 million/night

Observation

Template

Difference

Credits: E. Bellm

days

Ingested, enriched, filtered by

fink-portal.org  

See Julien Peloton’s talk Tuesday!
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DES Supernova
• 5 years with 10 fields 

(8 Shallow + 2 deep)

• >100 visits

• Tens of thousands of 
transients

• Spectroscopic follow 
up of hundreds. 
Thousands with only 
photometry + hostz

Supernova survey 
- 5 years 

- 10 Deep drilling fields


- 𝑚 ≈ 23.5-24.5 mag

LSST 
- 10 years

- WFD  + 5 Deep drilling fields

- 𝑚r ≈ 24.7 mag
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Supernova survey 

>2.000 high-quality SN Ia

LSST 

>1 million SN Ia


billions of detected objects 30.000 SN candidates

425 spectroscopically SN Ia
Smith, D’Andrea, Sullivan, AM et al. 2018

30.000 live transients (TiDES)
Frohmaier et al. 2025 
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Photometric 
classification
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Time-series in astrophysics

Time

Brightness

Light-curves


• Irregularly sampled


• Subject to weather conditions


• Partial information (e.g. photometry vs spectra)


• Only a small subset of events have been properly characterised…
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- used for cosmology for 
precision statistical analyses


- extragalactic transient


- different types: Ia, core-
collapse, peculiar…

13

Supernovae
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Classification challenges:


• Spectroscopic resources 
are scarce


• Spectra time constraints


• Selection of biased samples

“Traditional classification”
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Möller et al. 2020 
GitHub: supernnova/SuperNNova

• Recurrent Neural Networks (RNNs):


• LSTM


• GRU


• Bayesian RNNs


• MC dropout (Gal+2016)


• Bayes by Backprop (Fortunato+2017)


• SWA-G (Maddox+2019)


• Convolutional NN

15
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Performance depends on training
4282 A. Möller and T. de Boissière

scope of this paper. Unless specified otherwise, we choose to apply
global normalization throughout the rest of this work.

3.3 Comparison with other methods

The primary driver of supernova photometric classification has
been to disentangle type Ia from other types of supernovae. We
evaluate the performance of our SuperNNova baseline RNN on
this task and compare it with different classification algorithms: the
RF introduced in Section 2.5, the CNN structure in Section 2.6,
and results obtained with another RNN architecture (Charnock &
Moss 2017). We use the same training and validation samples
from the SALT2-fitted data set to evaluate all algorithms. We assess
uncertainties in the accuracy by performing five randomized runs
that select different training, validation, and testing splits. We obtain
for this data set an accuracy for the baseline RNN of 96.3 ± 0.4 and
an AUC of 0.995 ± 0.001.

3.3.1 Baseline RNN versus CNN

As we did for our baseline RNN, we first choose the best hyper-
parameters for the CNN. We probed batch size (64, 128, 512),
random length (True, False), size of hidden dimension (16, 32,
64), and different learning rates (0.01, 0.001, 0.0001). Our best
performance is found with: a batch size of 128, hidden dimension
32, learning rate 0.01, bidirectional layers, and training with random
length sequences. For this configuration, we find that our CNN
architecture obtains an accuracy of 94.53 ± 0.07 and an AUC of
0.9887 ± 0.0002 without any redshift information for the whole
SALT2-fitted data set. Our baseline RNN obtains higher accuracies
for this classification task. This behaviour is also seen with a smaller
data fraction, 0.2 where classification accuracies are found to be
93.1 ± 0.2 (97.1 ± 0.1, 98.98 ± 0.07) without (with photometric,
spectroscopic) host-redshift information. We note that other CNN
configurations may yield better accuracies. Our CNN model is
available in the SuperNNova repository5 in order to foster further
experiments on this classification task.

3.3.2 Baseline RNN versus RF

The RF classifier obtains accuracies of 95.15 ± 0.07 and an AUC of
0.9929 ± 0.0003 without redshift information. Our baseline RNN
has a higher accuracy and AUC than many RF methods found in
the literature (Lochner et al. 2016; Möller et al. 2016; Dai et al.
2018). However, classification accuracies depend on both the size
and content of training and testing sets and therefore cannot be
directly compared. We study the effect of the size of the training
sample on the accuracy. As shown in Fig. 3, we find that our
baseline RNN outperforms the RF for large data set sizes given
the same redshift information. We also find that RNNs exhibit an
increase in performance with larger data sets while the RF classifiers
remain almost constant. Again, we stress that even when no explicit
redshift information is provided to the RF classifier, the features
obtained with the SALT2 fit implicitly contain this information. The
high accuracy of our RNN shows that it has successfully learned
meaningful representations on top of raw photometric time series,
rather than using handcrafted features extracted from light-curve
fitting. By using photometry directly, we avoid biasing our classified
sample, a particularly relevant observation since the choice of

5https://github.com/supernnova/SuperNNova

Figure 3. Ia versus non-Ia classification accuracy with respect to training
set size using the SALT2-fitted data set. The top axis indicates the used
data fraction and the bottom axis indicates the number of supernovae.
The accuracy of baseline RNN is shown in indigo squares, CNN in grey
diamonds, and RF in orange circles. Error bars are one standard deviation
from the accuracy distribution for five runs with different random seeds
to initialize the networks weights. Classification used: no host-galaxy
redshifts are empty, photometric host-galaxy redshifts bottom filled, and
spectroscopic host redshifts fully filled. Our baseline RNN achieves greater
accuracies than the other classifiers for the same data set and explicit redshift
information.

feature extraction has a strong impact on performance (Lochner
et al. 2016).

3.3.3 Baseline RNN versus another RNN architecture

For reference purposes, we compare a recently introduced RNN-
based SN classifier with our baseline RNN trained with a similar
size set. Charnock & Moss (2017) use half of the PCC data set
5 times data augmented, equivalent to ≈ 50 000 supernova light
curves, and obtain an accuracy of 93.1 on binary classification
without redshift information and 94.8 with redshift. By selecting
a data fraction of 0.05 of our data set, we can train our baseline
RNN with 32 222 light curves and obtain a classification accuracy
of 92.4 ± 0.9 and an AUC of 0.980 ± 0.004 without redshift infor-
mation; when using photometric redshifts, we obtain an accuracy
of 96.8 ± 0.1. Although both methods were trained with different
samples, our accuracies are comparable. Our algorithm seems to be
more sensitive to redshift information, providing up to 4 per cent
accuracy increase for this sample size.

3.4 Redshift, contamination, and efficiency

The addition of photometric redshifts, which are available for all
our simulated supernovae, increases the accuracy of our baseline
RNN by 2 per cent for photometric and 3 per cent for spectroscopic
redshifts. Since spectroscopic redshifts are available for a subset of
supernovae, we only evaluate performance on light curves for which
this redshift is available. We will continue using this subsample
performance throughout the rest of this manuscript.

A photometrically classified type Ia supernova sample is expected
to have a small percentage of contamination from other supernova
types. As mentioned in Section 2.1, our simulations are realistic
and therefore include known SN rates and detection efficiencies
for a survey such as DES. Therefore, our estimates are a good

MNRAS 491, 4277–4293 (2020)
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High accuracy >98%

• with or without redshift information 

• Complete or partial light-curves


- Needs large simulations for training 
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NNs robust?
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positive !H. We find for the MC dropout and BBB implementations
a positive !H > 0.01.

Both BRNN implementations have uncertainties that are consis-
tent with the behaviour expected of epistemic uncertainties as shown
by the metrics computed above. However, we find that the size of
uncertainties differs in both methods. If we compute the mean of
the classification uncertainties when classifying the complete data
set, we find that the MC dropout implementation has uncertainties
twice larger than the BBB implementation. This may be due to
initialization effects or more fundamental effects due to the way each
method specifies variational distributions. Future research should
strive to improve the comprehension of these uncertainty estimates.

In the following section, we will further study the behaviour of
our BRNNs uncertainties. In particular, we will explore the effect of
non-representative training sets and the classification of OOD light
curves.

5 TOWA R D S C O S M O L O G Y A N D OTH E R
STATISTICAL ANALYSES

To perform statistical analyses using photometrically classified
supernovae, a high-accuracy algorithm is not enough. It is equally
important to show that it is statistically sound. By that, we mean
that it should provide well-calibrated probabilities and capture the
epistemic uncertainties related to the classification model. In the
following, we will quantify the performance of our algorithms
with respect to these requirements focusing on the Ia versus non-Ia
classification tasks.

5.1 Calibration

Classification probabilities should reflect the real likelihood of
events being correctly assigned to a target. Classification algorithms
where this is true are said to be calibrated. Niculescu-Mizil &
Caruana (2005) show that common machine learning algorithms
such as SVMs and boosted trees do not predict well-calibrated
probabilities, pushing predicted probabilities away from 0 and 1.
For other algorithms such as RF, the calibration is heavily data
dependent. Recently, Guo et al. (2017) showed that modern, deep
neural networks also suffer from poor calibration and that there is a
trade-off between classification performance and calibration.

To analyse our algorithms’ calibration, we use reliability dia-
grams (DeGroot & Fienberg 1983). These diagrams are constructed
by discretizing the predicted probability into 10 evenly spaced bins.
A predicted probability between 0.0 and 0.1 falls into the first bin,
and so on. For each bin, we plot the fraction of true positive cases
against the mean predicted probability in that bin. The fraction of
true positive cases in the binary classification is defined by the
number of type Ia supernovae in that probability bin with respect to
all supernovae in that bin. If the model is well calibrated, the points
will fall near the diagonal line. This is equivalent to saying that in a
sample with a hundred events classified as type Ia with a probability
0.7, we expect 70 per cent of events to be true SNe Ia and 30 per cent
to be misclassified SNe from other types. Furthermore, we construct
a metric to study the calibration deviation: the difference between
the two calibrations squared.

For the RF algorithm, we find a large calibration deviation when
classifying the SALT2-fitted data set, as can be seen in Fig. 7.
Over five randomized runs, the level of dispersion is found to be
0.025 ± 0.002. In this classification task, RNNs are found to have
better calibration than the RF algorithm with a dispersion an order
of magnitude lower. For BBB and MC dropout RNNs, we construct

Figure 7. Calibration of classification algorithms. Top: reliability diagram
showing the calibration for SALT2-fitted data set classification for a single
seed. We use the most accurate configurations for the RF (red circles),
baseline RNN (yellow circles), MC dropout RNN (blue triangles), and
BBB RNNs (purple triangles). Bottom: dispersion from perfectly calibrated
algorithms. Note that the RF algorithm has a large deviation from perfect
calibration while the RNNs are better calibrated than this algorithm with the
BBB implementation almost perfectly calibrated.

reliability diagrams using multiple predictions per sample, rather
than the median prediction. We find that diagrams built this way
exhibit better calibration than those built with a single prediction
per sample. This is evidence that the model has learned meaningful
predictive uncertainties since including the complete distribution of
probabilities improves the calibration.

Bayesian RNNs are found to be better calibrated than the
baseline RNN for both SALT-fitted and complete data sets. For
the classification of the complete data set without any redshift
information, we find a calibration dispersion from the baseline RNN
of 0.006 ± 0.001, which is reduced to 0.004 ± 0.002 for the MC
dropout and to 0.0005 ± 0.0004 for the BBB implementations.

Calibration depends on the nature and size of the training set. We
verify this, by measuring the dispersion for the baseline RNN when
classifying the SALT2-fitted data set without redshift information
with data fractions between {0.2–1.0}. For the nature of the training
set, we compare using the whole SALT2-fitted data set and 0.43 of
the complete data set. We find that the data fraction or nature of the
data set can change the dispersion up to 50 per cent.

Photometrically classified samples are usually selected from
those events that have a probability larger than a given threshold.
These thresholds are chosen as a compromise between purity and
size of the selected sample. However, miscalibration affects the
positive fraction of events in each bin, providing misleading proba-
bilities. To account for large calibration deviation, two approaches
may be taken: either to perform a post-processing recalibration (e.g.
Niculescu-Mizil & Caruana 2005; Guo et al. 2017) or the difference
between the obtained and true probability for each bin can be used
to re-weight obtained probabilities. This will be of importance
for classifier and data sets where large calibration dispersion is
observed. We consider our BBB and MC dropout RNNs to be well
calibrated due to deviations less than 1 per cent.

MNRAS 491, 4277–4293 (2020)
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positive !H. We find for the MC dropout and BBB implementations
a positive !H > 0.01.

Both BRNN implementations have uncertainties that are consis-
tent with the behaviour expected of epistemic uncertainties as shown
by the metrics computed above. However, we find that the size of
uncertainties differs in both methods. If we compute the mean of
the classification uncertainties when classifying the complete data
set, we find that the MC dropout implementation has uncertainties
twice larger than the BBB implementation. This may be due to
initialization effects or more fundamental effects due to the way each
method specifies variational distributions. Future research should
strive to improve the comprehension of these uncertainty estimates.

In the following section, we will further study the behaviour of
our BRNNs uncertainties. In particular, we will explore the effect of
non-representative training sets and the classification of OOD light
curves.

5 TOWA R D S C O S M O L O G Y A N D OTH E R
STATISTICAL ANALYSES

To perform statistical analyses using photometrically classified
supernovae, a high-accuracy algorithm is not enough. It is equally
important to show that it is statistically sound. By that, we mean
that it should provide well-calibrated probabilities and capture the
epistemic uncertainties related to the classification model. In the
following, we will quantify the performance of our algorithms
with respect to these requirements focusing on the Ia versus non-Ia
classification tasks.

5.1 Calibration

Classification probabilities should reflect the real likelihood of
events being correctly assigned to a target. Classification algorithms
where this is true are said to be calibrated. Niculescu-Mizil &
Caruana (2005) show that common machine learning algorithms
such as SVMs and boosted trees do not predict well-calibrated
probabilities, pushing predicted probabilities away from 0 and 1.
For other algorithms such as RF, the calibration is heavily data
dependent. Recently, Guo et al. (2017) showed that modern, deep
neural networks also suffer from poor calibration and that there is a
trade-off between classification performance and calibration.

To analyse our algorithms’ calibration, we use reliability dia-
grams (DeGroot & Fienberg 1983). These diagrams are constructed
by discretizing the predicted probability into 10 evenly spaced bins.
A predicted probability between 0.0 and 0.1 falls into the first bin,
and so on. For each bin, we plot the fraction of true positive cases
against the mean predicted probability in that bin. The fraction of
true positive cases in the binary classification is defined by the
number of type Ia supernovae in that probability bin with respect to
all supernovae in that bin. If the model is well calibrated, the points
will fall near the diagonal line. This is equivalent to saying that in a
sample with a hundred events classified as type Ia with a probability
0.7, we expect 70 per cent of events to be true SNe Ia and 30 per cent
to be misclassified SNe from other types. Furthermore, we construct
a metric to study the calibration deviation: the difference between
the two calibrations squared.

For the RF algorithm, we find a large calibration deviation when
classifying the SALT2-fitted data set, as can be seen in Fig. 7.
Over five randomized runs, the level of dispersion is found to be
0.025 ± 0.002. In this classification task, RNNs are found to have
better calibration than the RF algorithm with a dispersion an order
of magnitude lower. For BBB and MC dropout RNNs, we construct

Figure 7. Calibration of classification algorithms. Top: reliability diagram
showing the calibration for SALT2-fitted data set classification for a single
seed. We use the most accurate configurations for the RF (red circles),
baseline RNN (yellow circles), MC dropout RNN (blue triangles), and
BBB RNNs (purple triangles). Bottom: dispersion from perfectly calibrated
algorithms. Note that the RF algorithm has a large deviation from perfect
calibration while the RNNs are better calibrated than this algorithm with the
BBB implementation almost perfectly calibrated.

reliability diagrams using multiple predictions per sample, rather
than the median prediction. We find that diagrams built this way
exhibit better calibration than those built with a single prediction
per sample. This is evidence that the model has learned meaningful
predictive uncertainties since including the complete distribution of
probabilities improves the calibration.

Bayesian RNNs are found to be better calibrated than the
baseline RNN for both SALT-fitted and complete data sets. For
the classification of the complete data set without any redshift
information, we find a calibration dispersion from the baseline RNN
of 0.006 ± 0.001, which is reduced to 0.004 ± 0.002 for the MC
dropout and to 0.0005 ± 0.0004 for the BBB implementations.

Calibration depends on the nature and size of the training set. We
verify this, by measuring the dispersion for the baseline RNN when
classifying the SALT2-fitted data set without redshift information
with data fractions between {0.2–1.0}. For the nature of the training
set, we compare using the whole SALT2-fitted data set and 0.43 of
the complete data set. We find that the data fraction or nature of the
data set can change the dispersion up to 50 per cent.

Photometrically classified samples are usually selected from
those events that have a probability larger than a given threshold.
These thresholds are chosen as a compromise between purity and
size of the selected sample. However, miscalibration affects the
positive fraction of events in each bin, providing misleading proba-
bilities. To account for large calibration deviation, two approaches
may be taken: either to perform a post-processing recalibration (e.g.
Niculescu-Mizil & Caruana 2005; Guo et al. 2017) or the difference
between the obtained and true probability for each bin can be used
to re-weight obtained probabilities. This will be of importance
for classifier and data sets where large calibration dispersion is
observed. We consider our BBB and MC dropout RNNs to be well
calibrated due to deviations less than 1 per cent.
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Figure 4. Hubble diagram of DES-SN5YR. We show both the single SN events and the redshift-binned SN distance moduli.
Redshift bins are adjusted so that each bin has the same number of SNe (⇠ 50). The 1635 new DES supernovae are in blue,
and in the upper panel they are shaded by their probability of being a Type Ia; most outliers are likely contaminants (pale
blue). The inset shows the number of SNe as a function of redshift (same z-range as the main plot). The lower panel shows
the di↵erence between the data and the best fit Flat-wCDM model from DES-SN5YR alone (third result in Table 2), and
overplots three other best fit cosmological models — Flat-⇤CDM model from DES-SN5YR alone (magenta line, first result in
Table 2), Flat-w0waCDM model from DES-SN5YR alone (green line, fourth result in Table 2), and Planck 2020 Flat-⇤CDM
model without SN data (dashed line, ⌦Planck

M =0.317 ± 0.008).

tions” (BBC) framework (Kessler & Scolnic 2017). In
particular, bias corrections �µbias,i are estimated from
a large simulation of our sample. The simulation mod-
els the rest-frame SN Ia spectral energy distribution
(SED) at all phases, SN correlations with host-galaxy
properties, SED reddening through an expanding uni-
verse, broadband griz fluxes, and instrumental noise
(see Fig. 1 in Kessler et al. 2019a). Using Eq. 1 there re-
mains intrinsic scatter of ⇠ 0.1 mag in Hubble residuals.
Following the numerous recent studies on understanding
and modelling SN Ia dust extinction and progenitors
(Wiseman et al. 2021, 2022; Duarte et al. 2022; Dixon
et al. 2022; Chen et al. 2022; Meldorf et al. 2023), we
model this residual scatter using the dust-based model
from Brout & Scolnic (2021); Popovic et al. (2023a),
which improves on the previous commonly used models
in Kessler et al. (2013) that are based on SALT2 error
models in Guy et al. (2010); Chotard et al. (2011). This
intrinsic scatter remains the largest source of systematic
uncertainty from the simulation.

As we do not spectroscopically classify the SNe and
thus expect contamination from core-collapse (CC) su-
pernovae, we perform machine learning light-curve clas-
sification on the sample following Vincenzi et al. (2023);
Möller et al. (2022). We implement two advanced ma-
chine learning classifiers, SuperNNova (Möller & de
Boissière 2020) and SCONE (Qu et al. 2021) and use
state-of-the-art simulations to model contamination (es-
timated to be ⇠ 6.5%, see Table 10 and Sect. 7.1.5 of
Vincenzi et al. 2024). Classifiers are trained using core-
collapse and peculiar SN Ia simulations based on Vin-
cenzi et al. (2021) and using state-of-the-art SED tem-
plates by Vincenzi et al. (2019); Kessler et al. (2019b).
These DES simulations are the first to robustly repro-
duce the contamination observed in the Hubble residuals
(Vincenzi et al. 2021; Vincenzi et al. 2024, Table 10).

For each SN, the trained classifiers assign a probability
of being a Type Ia, and these probabilities are included
within the BEAMS framework to marginalize over core-
collapse contamination and produce the final Hubble Di-
agram (Kunz et al. 2012; Hlozek et al. 2012). The final

DES Collaboration 2024

Largest high-z SN Ia sample from a 
single survey for cosmology

DES 5-year SNIa
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NNs interpretable?
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Uncertainties
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Lack of knowledge 
about the truth…
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• Aleatoric 


“due to the random nature of the way the 
observed objects are created and the 
way we make observations.”


“cannot be reduced through greater 
understanding”


uncertainties in the input 
data, e.g. noise or other 

effects of data acquisition 

Uncertainties
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Uncertainties
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• Epistemic


“lack of knowledge about underlying 
model of the data as well as the form of 
the neural network, the way it is 
trained, the choice of cost function 
used to characterise how well the 
network performs, etc”


ignorance about the model 
that generated the 

classification  
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Uncertainties

25

• Epistemic


“lack of knowledge about underlying 
model of the data as well as the form of 
the neural network, the way it is 
trained, the choice of cost function 
used to characterise how well the 
network performs, etc”


ignorance about the model 
that generated the 

classification  

• non-representative training sets


• finding/rejecting unknowns (anomalies, 
OOD)


• Rigorous ML: bias-free, meaningful 
uncertainties 
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Meaningful uncertainties

classification probabilitytraining
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Meaningful uncertainties

classification probabilitytraining
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Meaningful uncertainties

classification probabilitytraining
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Meaningful uncertainties

classification probabilitytraining Overconfident prediction
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Meaningful uncertainties

classification probabilitytraining Overconfident prediction

classification uncertainty

https://github.com/
anaismoller/BNNs
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Bayesian deep learning

Epistemic uncertainties:  
express our ignorance about the model that generated the 

data. 

Physicists:
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𝒫 (y |x, w)
classification data weights

NLL = min
w

N

∑
i=1

− log 𝒫(yi |xi, w)
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𝒫(y |x) = ∫ 𝒫(y |x, w)𝒫 (w |𝒟) dw

Distribution of weights
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𝒫(y |x) = ∫ 𝒫(y |x, w)𝒫 (w |𝒟) dw

Posterior is intractable for deep NNs



A. Möller |  amoller@swin.edu.au 35

𝒫(y |x) = ∫ 𝒫(y |x, w)𝒫 (w |𝒟) dw

Posterior is intractable for deep NNs

𝒫(w |𝒟) ≈ q(w |θ) variational distribution

̂θ = min
θ

KL (q(w |θ) | |𝒫(w |𝒟))Training minimisation
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BNNs Variational Inference

Algorithm: Bayes by Backprop for RNNs

Sample ✏ ⇠ N (0, I), ✏ 2 Rd, and set network
parameters to ✓ = µ+ �✏.
Sample a minibatch of truncated sequences (x, y).
Do forward and backward propagation as normal,
and let g be the gradient w.r.t ✓.
Let g

KL
✓ , g

KL
µ , g

KL
� be the gradients of

logN (✓|µ,�2) � log p(✓) w.r.t. ✓, µ and �

respectively.
Update µ using the gradient g+ 1

C gKL
✓

B +
gKL
µ

BC .

Update � using the gradient
⇣

g+ 1
C gKL

✓

B

⌘
✏+ gKL

�
BC .

Figure 1: Illustration (left) and Algorithm (right) of Bayes by Backprop applied to an RNN.

to sample the parameters of the RNN, and how to weight the contribution of the KL regulariser of
(2). We shall briefly justify the adaptation of BBB to RNNs, given in Figure 1. The variational free
energy of (2) for an RNN on a sequence of length T is:

L(✓) = �Eq(✓) [log p(y1:T |✓, x1:T )] + KL [q(✓) || p(✓)] , (3)

where p(y1:T |✓, x1:T ) is the likelihood of a sequence produced when the states of an unrolled RNN
FT are fed into an appropriate probability distribution. The parameters of the entire network are
✓. Although the RNN is unrolled T times, each weight is penalised just once by the KL term,
rather than T times. Also clear from (3) is that when a Monte Carlo approximation is taken to the
expectation, the parameters ✓ should be held fixed throughout the entire sequence.

Two complications arise to the above naive derivation in practice: firstly, sequences are often long
enough and models sufficiently large, that unrolling the RNN for the whole sequence is prohibitive.
Secondly, to reduce variance in the gradients, more than one sequence is trained at a time. Thus the
typical regime for training RNNs involves training on mini-batches of truncated sequences.

Let B be the number of mini-batches and C the number of truncated sequences (“cuts”), then we
can write (3) as:

L(✓) = �Eq(✓)

"
log

BY

b=1

CY

c=1

p(y(b,c)|✓, x(b,c))

#
+ KL [q(✓) || p(✓)] , (4)

where the (b, c) superscript denotes elements of cth truncated sequence in the bth minibatch. Thus
the free energy of mini-batch b of a truncated sequence c can be written as:

L(b,c)(✓) = �Eq(✓)

h
log p(y(b,c)|✓, x(b,c)

, s
(b,c)
prev )

i
+ w

(b,c)
KL KL [q(✓) || p(✓)] , (5)

where w
(b,c)
KL distributes the responsibility of the KL cost among minibatches and truncated se-

quences (thus
PB

b=1

PC
c=1 w

(b,c)
KL = 1), and s

(b,c)
prev refers to the initial state of the RNN for the

minibatch x
(b,c). In practice, we pick w

(b,c)
KL = 1

CB so that the KL penalty is equally distributed
among all mini-batches and truncated sequences. The truncated sequences in each subsequent mini-
batches are picked in order, and so s

(b,c)
prev is set to the last state of the RNN for x(b,c�1).

Finally, the question of when to sample weights follows naturally from taking a Monte Carlo ap-
proximations to (5): for each minibatch, sample a fresh set of parameters.

4 POSTERIOR SHARPENING

The choice of variational posterior q(✓) as described in Section 3 can be enhanced by adding side
information that makes the posterior over the parameters more accurate, thus reducing variance of
the learning process.
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Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-

MNRAS 000, 1–18 (2018)

Approximating the variational distribution

1. MC dropout 
Gal & Ghahramani 2016

2. Bayes by Backprop 
Fortunato+ 2017

xt

yt

xt�1

yt�1

xt+1

yt+1

(a) Naive dropout RNN

xt

yt

xt�1

yt�1

xt+1

yt+1

(b) Variational RNN

Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

suitably defined likelihood functions. We then perform approximate variational inference in these
probabilistic Bayesian models (which we will refer to as Variational RNNs). Approximating the
posterior distribution over the weights with a mixture of Gaussians (with one component fixed at
zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone

2

Other methods in literature e.g. SWA-G (Maddox+2019), Flipout (Wen+2018)
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Some examples in literature
• MC Dropout Gal &  Ghahramani 2016


• Bayes by Backprop Fortunato+ 2017

- Regression:


- Strong lensing: Perreault Levasseur+ 2017


- 21cm regression: Hortúa+2020


- Stellar ages: Weaver+2024


- CC SN GW: Nunes+2024


- AGN properties; Tien+2025


- Galaxies properties: Ginolfi+2024


- Classification 

- Galaxy: AL+CNN Walmsley+ 2020


- SN Möller+ 2020
- SN classification: Möller+ 2020

16 M. Walmsley et al.

(a) Galaxies with maximum mutual information for ‘Bar’ (b) Galaxies with minimum mutual information for ‘Bar’

Figure 15. As with Figure 14 above, but showing galaxies identified by the final model from a ‘Bar’ simulation.

MNRAS 000, 1–21 (2019)

Walmsley+ 2020

• SWA-G Maddox+2019
- Planetary regression: RNN Cranmer+2021
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BNNs for classification

MC dropout 
Gal+ 2016

Bayes by Backprop 
Fortunato+ 2017

5162 A. M ̈oller et al. 

MNRAS 514, 5159–5177 (2022) 

Table 1. Simulations used for training and testing SNN . Columns 
indicate simulation name, approximate number of light curves generated 
and number of light curves when balancing simulations to have the same 
number of normal Type Ia and other SNe. 
Simulation Number of Balanced number of 
name light curves (10 6 ) light curves (10 6 ) 
TRAIN-SIM 4.5 3.63 
S-TRAIN-SIM 2.0 1.4 
TEST-SIM 0.8 Not applicable 

information on the inputs necessary to obtain realistic DES-SN 
simulations can be found in Kessler et al. ( 2019b ). We also make 
use of recent updates in the library of simulated host galaxies for 
DES-SN as introduced by Vincenzi et al. ( 2020 ). This host galaxy 
library includes the dependence of SN rates on galaxy properties 
such as stellar mass and galaxy star formation rate. 

We simulate a variety of SNe using volumetric rates and input 
parameters as described in Vincenzi et al. ( 2020 ). Our simulations 
are performed o v er a redshift range 0.05 < z < 1.3. These simulations 
contain normal SNe Ia, peculiar SNe Ia, and core-collapse SNe. 

Normal SNe Ia are generated using the SALT2 SED model 
presented in Guy et al. ( 2007 ), trained for the JLA sample (Betoule 
et al. 2014 ) and extended to UV and IR wavelengths (Pierel et al. 
2018 ) to impro v e the redshift co v erage of our simulated SNe. 
Volumetric rates from Frohmaier et al. ( 2019 ) are used. The intrinsic 
stretch and colour distributions are taken from Scolnic & Kessler 
( 2016 ) and we use the G10 intrinsic scatter model from Kessler 
et al. ( 2013 ) based on Guy et al. ( 2010 ). Peculiar SNe Ia include 
SN91bg-like (Kessler et al. 2019a ) and SNe Iax (Jha 2017 ) with 
models updates in Vincenzi et al. ( 2022 ). 

We make use of three different core-collapse SN template col- 
lections: V19 (Vincenzi et al. 2019 ), J17 (Jones et al. 2017 ), 
and templates used in the Supernova Photometric Classification 
Challenge (SPCC; Kessler et al. 2010 ). The main differences between 
these templates include: the number of SNe used to create them, the 
rates used, and the interpolation methods and wavelength coverage. 
Detailed information on these templates can be found in Vincenzi 
et al. ( 2019 ). 

Our baseline simulations, and used unless specified, are generated 
using V19 core-collapse SN templates. Relative core-collapse SN 
rates are given by Li et al. ( 2011 ) updated in Shivvers et al. ( 2017 ) 
and the total rate is assumed to follow the cosmic star formation 
history presented in Madau, Weisz & Conroy ( 2014 ) normalized by 
the local SN rate of Frohmaier et al. ( 2019 ). 

We generate different simulations to train (TRAIN-SIM and a 
smaller S-TRAIN-SIM for computing efficiency of certain e v aluation 
tasks) and test (TEST-SIM) SNN as shown in Table 1 . For training, 
after generating the simulation, we randomly trim the simulation to 
ensure a balanced training sample, with the same number of normal 
SNe Ia and non-normal Ia (core-collapse SNe and peculiar SNe 
Ia). Volumetric rates guarantee that the mixture of non-Ia SNe is 
consistent with measured rates. We note that the size of the S-TRAIN- 
SIM training set is the same as the complete sample used in M ̈oller & 
de Boissi ̀ere ( 2019 ). Having defined our simulated samples we now 
turn to methods of classifying them. 
3.3 SUPERNNOVA (SNN) 
SUPERNNOVA (M ̈oller & de Boissi ̀ere 2019 ) is a deep learning 
framework for light-curve classification. It makes use of fluxes and 

Figure 1. SNN classification for the DES-SN candidate DES17C2hqm 
at redshift 0.473 ± 0.001 using three different neural networks: baseline 
RNN, BNN MC dropout (MC), and BNN Bayes by Backprop (BBB). All 
methods were trained with the TRAIN-SIM simulation. Top row shows the 
SN candidate light curve from DES (normalized flux with cosmo quantile 
method in band-passes g, r, i, z ; time in Observer Frame days). Bottom rows 
shows the classification scores for each method (SN Ia: maroon, non-SN Ia: 
orange). Classification scores use all the data before a given date. The BNN 
methods provide classification uncertainties (shadowed regions show 68 and 
95 per cent contours). Each BNN method provides different estimations, 
this is explored in Section 5.2 . The large uncertainties in the classification 
probability represent the lack of confidence in this classification. For this 
example, uncertainties around days 20–30 are correlated with the lower SNR, 
while around days 50–60 that correlation is less straight forward to interpret 
and could be linked to the secondary peak visible in most filters. 
their measurement uncertainties o v er time for accurate classification 
of time-domain candidates. Additional information such as host 
galaxy redshifts can be included to impro v e performance. 

SNN includes different classification algorithms, such as LSTM 2 
Recurrent Neural Networks (RNNs) and two approximations for 
Bayesian Neural Networks (BNNs). We show in Fig. 1 the classifi- 
cation probabilities from different methods for a given SN light curve. 
2 Long short-term memory (LSTM; Hochreiter & Schmidhuber 1997 ). 
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“meaningful classification uncertainties”

- Out-of-distribution events (anomalies)


- Training set representativity

With simulations
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Out of Distribution

training set to classify
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Out of Distribution

training set to classify
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Out of Distribution

low probability for any class
RNN

0.2
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Out of Distribution

low probability for any class
RNN

overconfident prediction for the 
difficult class

0.2
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-

MNRAS 000, 1–18 (2018)

Page 13 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

BRNN

Distribution of predictions

18 Möller & de Boissière

Figure 4. A recurrent network on MNIST. This RNN is able to
obtain similar prediction behaviour as Figure 1 which is what is
expected for OOD events.

Figure 5. A Variational Dropout recurrent network on MNIST.
This network collapses and outputs high-certainty predictions for
OOD images.

with high probability while the bayesian network exhibits
large variance for multiple classes.

While we have verified that tuning the various hyper-
parameters improves the uncertainty performance on this
qualitative examination, it is clear that the behaviour of
Bayesian recurrent networks should be critically analyzed:
the network remains at risk to collapse its predictions when
fed with unrelated data. This sheds light on the negative �H

found in Section 5.3: for OOD data, which looks nothing like
the training data, the network likely collapses and outputs
a prediction with very high certainty, giving a very low en-
tropy score to the out of sample data. We note that this is
possibly exacerbated by the type of data used to train the
network: supernova fluxes indeed exhibit variations span-
ning multiple orders of magnitude which leads to persisting
artifacts even after normalization. Future work will focus on
characterizing this phenomenon and developing methods to
improve robustness on out-of-distribution data.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

Figure 6. A Bayesian By Backprop recurrent network on
MNIST. This network collapses and outputs high-certainty pre-
dictions for OOD images.

MNRAS 000, 1–18 (2018)
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Möller + 2020

For both MC dropout and BBB (although different amplitudes)

Out of Distribution
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Kendall & Gal (2017), we split uncertainties into two cate-
gories: aleatoric and epistemic. Aleatoric uncertainties cap-
ture the uncertainties in the input data, e.g. noise or other
e↵ects of data acquisition. Epistemic uncertainties express
our ignorance about the model that generated the data. The
latter depends on the network structure and the training set
and therefore can be reduced with more flexible models, as
well as larger and more diverse training sets.

In SuperNNova, we do not model aleatoric uncertain-
ties since those are already included in the dataset (through
simulated flux measurement errors). By casting learning in
a Bayesian framework, we expect to model epistemic uncer-
tainties.

For BRNNs, given a light-curve x we can obtain a set
of predictions pj (x) j=1...ns

where the weights are sampled
ns times from the prediction’s posterior. We compute the
model uncertainty for a given light-curve xi as:

b� = std

0
BB@
nsX

j=1
pj (xi )

1
CCA (8)

where j 2 [1,ns ] is the index of inference samples, pj (xi ) is
the classification probability for the given light-curve xi for
each inference sample j, and std is the standard deviation.

4.4.1 Uncertainty evaluation metrics

To evaluate the uncertainty estimates of the BRNNs in Su-
perNNova, we make use of two metrics:

• Mean model uncertainty: for a given test set Dk , we
average the model uncertainties (b� from Eq. 8) over all light-
curves:

hb�k i =
1
N

NX

i=1
b�i . (9)

where i 2 [1,N] is the index of each light-curve in test set
Dk .

For two given sets of predictions, we can compute the
di↵erence between their uncertainties as:

�hb�1,2i = hb�1i � hb�2i. (10)

where b�i is defined in Equation 9 for a set of predictions i.
• Entropy: we follow Fortunato et al. (2017) and define,

for a test dataset Dt : [x1, ...xN ] with N light-curves and a
classification model m, the entropy of Dt under m as:

Hm[Dt ] =
NX

i=1
pm (yi |xi )log

 
1

pm (yi |xi )

!
. (11)

where pm (yi |xi ) is the classification probability given the
light-curve i using model m. Entropy is a proxy for the
model’s confidence on predictions. Thus, confident predic-
tions will yield low entropy. An equivalent per light-curve
entropy can be computed as Hm[Dt ] = 1

N Hm[Dt ], where
N is the number of light-curves in a given test set. For two
given set of predictions, we can define the entropy gap �H

by:

�H = Hm1 [Dt ]�Hm2 [Dt ] or = Hm[Dt1 ]�Hm[Dt2 ]. (12)

where the first option evaluates the entropy gap over the
same dataset for two given models (m1,m2), and the second
uses the same model to make predictions for two di↵erent
data sets (Dt1 ,Dt2).

4.4.2 Uncertainty evaluation

We now evaluate the uncertainty estimates of the BRNNs
in SuperNNova. Bayesian Neural Networks aim to capture
epistemic uncertainties by putting a prior distribution over
the NN’s weights. Bayesian inference leads to computing a
posterior which represents the set of plausible models, given
the data. As more data is available, we expect these uncer-
tainties to be explained away. To verify this, we make pre-
dictions with two models on the same test set. The models
di↵er only by the number of light-curves used for training.

First, we compute �hb�i (Eq. 10) between the predic-
tions obtained with a model trained with a small number of
light-curves and one trained with a larger number. We ex-
pect this metric to be positive. For the complete dataset we
compute the �hb�i of models trained with 43% and the whole
training set, �hb�i = hb�0.43i�hb�wholei. We find �hb�i = 0.005
and 0.007 respectively. We find similar values for the �hb�i
of models trained with half and the salt fitted training set.

Second, we compute the entropy gap defined in Eq. 12
between the same predictions. Since we expect the predic-
tions from the model trained with less light-curves to be
more uncertain than the one from a model trained with
a larger dataset, we should obtain a positive �H. We find
for the MC dropout and BBB implementations a positive
�H > 0.01.

Both BRNNs implementations have uncertainties which
are consistent with the behavior expected of epistemic uncer-
tainties as shown by the metrics computed above. However,
we find that the size of uncertainties di↵er in both meth-
ods. If we compute the mean of the classification uncertain-
ties when classifying the complete dataset, we find that the
MC dropout implementation has uncertainties twice larger
than the BBB implementation. This may be due to initial-
ization e↵ects or more fundamental e↵ects due to the way
each method specifies variational distributions. Future re-
search should strive to improve the comprehension of these
uncertainty estimates.

In the following Section, we will further study the be-
havior of our BRNNs uncertainties. In particular, we will
explore the e↵ect of non-representative training sets and the
classification of out-of-distribution light-curves.

5 TOWARDS COSMOLOGY AND OTHER
STATISTICAL ANALYSES

To perform statistical analyses using photometrically classi-
fied supernovae, a high accuracy algorithm is not enough. It
is equally important to show that it is statistically sound. By
that, we mean that it should provide well calibrated prob-
abilities and capture the epistemic uncertainties related to
the classification model. In the following, we will quantify
the performance of our algorithms with respect to these re-
quirements focusing on the Ia vs. non Ia classification task.

5.1 Calibration

Classification probabilities should reflect the real likelihood
of events being correctly assigned to a target. Classifica-
tion algorithms where this is true are said to be calibrated.
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Kendall & Gal (2017), we split uncertainties into two cate-
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0
BB@
nsX
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pj (xi )

1
CCA (8)

where j 2 [1,ns ] is the index of inference samples, pj (xi ) is
the classification probability for the given light-curve xi for
each inference sample j, and std is the standard deviation.
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where i 2 [1,N] is the index of each light-curve in test set
Dk .

For two given sets of predictions, we can compute the
di↵erence between their uncertainties as:

�hb�1,2i = hb�1i � hb�2i. (10)

where b�i is defined in Equation 9 for a set of predictions i.
• Entropy: we follow Fortunato et al. (2017) and define,

for a test dataset Dt : [x1, ...xN ] with N light-curves and a
classification model m, the entropy of Dt under m as:

Hm[Dt ] =
NX

i=1
pm (yi |xi )log
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where pm (yi |xi ) is the classification probability given the
light-curve i using model m. Entropy is a proxy for the
model’s confidence on predictions. Thus, confident predic-
tions will yield low entropy. An equivalent per light-curve
entropy can be computed as Hm[Dt ] = 1

N Hm[Dt ], where
N is the number of light-curves in a given test set. For two
given set of predictions, we can define the entropy gap �H

by:

�H = Hm1 [Dt ]�Hm2 [Dt ] or = Hm[Dt1 ]�Hm[Dt2 ]. (12)

where the first option evaluates the entropy gap over the
same dataset for two given models (m1,m2), and the second
uses the same model to make predictions for two di↵erent
data sets (Dt1 ,Dt2).

4.4.2 Uncertainty evaluation

We now evaluate the uncertainty estimates of the BRNNs
in SuperNNova. Bayesian Neural Networks aim to capture
epistemic uncertainties by putting a prior distribution over
the NN’s weights. Bayesian inference leads to computing a
posterior which represents the set of plausible models, given
the data. As more data is available, we expect these uncer-
tainties to be explained away. To verify this, we make pre-
dictions with two models on the same test set. The models
di↵er only by the number of light-curves used for training.

First, we compute �hb�i (Eq. 10) between the predic-
tions obtained with a model trained with a small number of
light-curves and one trained with a larger number. We ex-
pect this metric to be positive. For the complete dataset we
compute the �hb�i of models trained with 43% and the whole
training set, �hb�i = hb�0.43i�hb�wholei. We find �hb�i = 0.005
and 0.007 respectively. We find similar values for the �hb�i
of models trained with half and the salt fitted training set.

Second, we compute the entropy gap defined in Eq. 12
between the same predictions. Since we expect the predic-
tions from the model trained with less light-curves to be
more uncertain than the one from a model trained with
a larger dataset, we should obtain a positive �H. We find
for the MC dropout and BBB implementations a positive
�H > 0.01.

Both BRNNs implementations have uncertainties which
are consistent with the behavior expected of epistemic uncer-
tainties as shown by the metrics computed above. However,
we find that the size of uncertainties di↵er in both meth-
ods. If we compute the mean of the classification uncertain-
ties when classifying the complete dataset, we find that the
MC dropout implementation has uncertainties twice larger
than the BBB implementation. This may be due to initial-
ization e↵ects or more fundamental e↵ects due to the way
each method specifies variational distributions. Future re-
search should strive to improve the comprehension of these
uncertainty estimates.

In the following Section, we will further study the be-
havior of our BRNNs uncertainties. In particular, we will
explore the e↵ect of non-representative training sets and the
classification of out-of-distribution light-curves.

5 TOWARDS COSMOLOGY AND OTHER
STATISTICAL ANALYSES

To perform statistical analyses using photometrically classi-
fied supernovae, a high accuracy algorithm is not enough. It
is equally important to show that it is statistically sound. By
that, we mean that it should provide well calibrated prob-
abilities and capture the epistemic uncertainties related to
the classification model. In the following, we will quantify
the performance of our algorithms with respect to these re-
quirements focusing on the Ia vs. non Ia classification task.

5.1 Calibration

Classification probabilities should reflect the real likelihood
of events being correctly assigned to a target. Classifica-
tion algorithms where this is true are said to be calibrated.
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Figure 9. Predicted classification percentages for best config-
uration BBB RNN with single seed. Columns indicate number
of targets for the classification (with probabilities summing one)
and an additional column indicating a low probability prediction,
< 0.6, 0.4, 0.2 for 2, 3 and 7 classes respectively. Rows represent
the di↵erent light-curve types. All rows are out-of-distribution
generated light-curves except the row“SNe”representing our test-
ing dataset. Since the testing set has balanced classes, we expect
the prediction percentage in the row “SNe” to be balanced as
well. Note that the out-of-distribution events are rarely classified
as type Ia SNe (< 2.6% binary, < 1.8% ternary and < 0.6% in
seven-way classification), the highest percentages in binary clas-
sification are for OOD which can resemble SNe light-curves, e.g.
reverse and shu✏e. In ternary and seven-way classification, out-
of-distribution events are preferably classified as type II, IIn or
IIL1 SNe. Note that the number of low probability detections are
much higher for OOD when classifying in three or seven classes.

supernovae as can be seen in Figure 9 with the BBB RNN.
In ternary and seven-way classification the most common
predictions for OOD events are types II: IIn, IIp, IIL1.

To assess how our prediction uncertainties behave with
respect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. Although �H does not measure
uncertainty in an absolute way, it can be used as a quali-
tative test where OOD events should show high entropy as
seen in Fortunato et al. (2017). For the binary classification
problem, we find positive �H for random and reverse light-
curves for both the MC dropout and BBB implementations,
with the BBB having the largest entropy gap. Interestingly,
for sinusoidal and shu✏e light-curves this metric is nega-
tive for the MC dropout implementation. For the ternary
and seven-way problems, other OOD predictions are as well

Figure 10. Out-of-distribution and SN light-curve prediction dis-
tribution for best MC dropout configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities for di↵er-
ent supernova classes depicted with various line styles and colors.
First four rows show SNe light-curves while last four rows are out-
of-distribution events. For the OOD events we see di↵erent be-
haviours: high classification probabilities for a certain supernova
class with large uncertainties, clustered classification probabilities
around a small value and a mixture of both behaviours.

negative.While Fortunato et al. (2017) observe large positive
entropy for OOD events, our experiments show surprisingly
a mixed behaviour. We explore this question in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erent behaviours for classification of OOD
events in a seven-way classification in Figure 10.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this section we examine
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Figure 9. Predicted classification percentages for best config-
uration BBB RNN with single seed. Columns indicate number
of targets for the classification (with probabilities summing one)
and an additional column indicating a low probability prediction,
< 0.6, 0.4, 0.2 for 2, 3 and 7 classes respectively. Rows represent
the di↵erent light-curve types. All rows are out-of-distribution
generated light-curves except the row“SNe”representing our test-
ing dataset. Since the testing set has balanced classes, we expect
the prediction percentage in the row “SNe” to be balanced as
well. Note that the out-of-distribution events are rarely classified
as type Ia SNe (< 2.6% binary, < 1.8% ternary and < 0.6% in
seven-way classification), the highest percentages in binary clas-
sification are for OOD which can resemble SNe light-curves, e.g.
reverse and shu✏e. In ternary and seven-way classification, out-
of-distribution events are preferably classified as type II, IIn or
IIL1 SNe. Note that the number of low probability detections are
much higher for OOD when classifying in three or seven classes.

supernovae as can be seen in Figure 9 with the BBB RNN.
In ternary and seven-way classification the most common
predictions for OOD events are types II: IIn, IIp, IIL1.

To assess how our prediction uncertainties behave with
respect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. Although �H does not measure
uncertainty in an absolute way, it can be used as a quali-
tative test where OOD events should show high entropy as
seen in Fortunato et al. (2017). For the binary classification
problem, we find positive �H for random and reverse light-
curves for both the MC dropout and BBB implementations,
with the BBB having the largest entropy gap. Interestingly,
for sinusoidal and shu✏e light-curves this metric is nega-
tive for the MC dropout implementation. For the ternary
and seven-way problems, other OOD predictions are as well

Figure 10. Out-of-distribution and SN light-curve prediction dis-
tribution for best MC dropout configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities for di↵er-
ent supernova classes depicted with various line styles and colors.
First four rows show SNe light-curves while last four rows are out-
of-distribution events. For the OOD events we see di↵erent be-
haviours: high classification probabilities for a certain supernova
class with large uncertainties, clustered classification probabilities
around a small value and a mixture of both behaviours.

negative.While Fortunato et al. (2017) observe large positive
entropy for OOD events, our experiments show surprisingly
a mixed behaviour. We explore this question in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erent behaviours for classification of OOD
events in a seven-way classification in Figure 10.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this section we examine
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Representativity

• Tagged datasets are small ~thousands of supernovae and are biased


• Simulations are usually used for training and benchmarking
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aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
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Representativity

• Tagged datasets are small ~thousands of supernovae and are biased


• Simulations are usually used for training and benchmarking
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d
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p
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resen
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b
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w
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b
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p
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b
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p
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b
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b
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p
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d
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b
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A
L
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d
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b
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b
u
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at
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p
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w
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.
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o
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d
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u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
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p
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an
d
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u
n
seen
,
p
ossib
ly
ou
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istrib
u
tion
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p
les
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resen
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allen
ge.
In
th
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w
e
stu
d
y
th
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p
erform
an
ce
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u
-

p
erN
N
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w
h
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in
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ou
t-of-d
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u
tion
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r
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eren
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O
D
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u
✏
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ligh
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u
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an
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✏
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3.9%
resp
ectively
w
ith
th
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an
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resem
b
le
su
p
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sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
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al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
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are
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ed
as
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N
e
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in

th
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im
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an
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<
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for
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aselin
e

an
d
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B
B
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en
tation
s.
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h
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p
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su
p
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w
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an
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erefore
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m
ost
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O
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even
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b
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th
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ra
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b
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b
ra
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p
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at
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b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
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at
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at
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p
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at
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at
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w
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e
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b
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at
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p
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N

p
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at
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p
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ti
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m
is
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g
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or

F
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D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn
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s
is
sh
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n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea
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o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
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k
.
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O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

peak brightness i

accuracy decreases ! Lochner+ 2016, Charnock+2017
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Representativity

12

M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
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at
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at
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p
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p
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c
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Representativity
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R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

peak brightness i

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
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Prospects for Rubin

(i) can BNN uncertainties be used as an indicator of the 
representativity of the training set for a given data set? 


(ii) can BNN uncertainties replace selection cuts?  

With data
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MNRAS 514, 5159–5177 (2022) 

Figure 5. Distribution of classification uncertainty for Baseline MC dropout (upper row) and Bayes by Backprop technique (lower row). We show uncertainties 
as a function of classification probability for all fields (left), SNR of the third brightest point in the light curve (SNRMAX3, columns 2 and 3), and redshift 
(zHD, columns 4 and 5). Coloured lines show the median of the data with solid blue representing all fields, dotted yellow representing shallow fields, and 
dotted–dashed red representing the deep fields. Simulations are shown by the grey-dashed lines. Shaded regions show the 68 per cent percentile. 
Table 8. Photometric classification of light-curves with Bayesian Neural 
Networks. Columns indicate: the number of photometrically selected events 
and the number of spectroscopic SNe Ia contained in that sample. We show 
these samples with JLA-like SALT2 cuts as in Section 4.2 and when adding 
a cut in the BNN classification uncertainty. 

+ JLA-like + JLA-like + unc 
Method photo Ia spec Ia photo Ia spec Ia 

MC dropout 
Single model 1532 + 7 −4 335 + 1 −1 1513 + 6 −3 333 + 0 −0 
Ensemble (prob. av.) 1535 + 3 −2 336 + 0 −0 1520 + 2 −1 333 + 0 −0 
Baseline MC sample 1535 336 1520 333 

BBB 
Single model 1526 + 8 −6 334 + 1 −0 1487 + 5 −2 328 + 2 −0 
Ensemble (prob. av.) 1528 + 1 −1 335 + 1 −0 1483 + 0 −0 324 + 1 −0 
Baseline BBB 
sample 1529 336 1483 324 
Ho we ver, a potential use could be rejecting candidates with large 
uncertainties, as they sometimes have light curves with photometry 
outliers. 

Here, we explore other possible uses of BNN uncertainties, using 
samples that have not been constrained with selection cuts. We aim 
to answer two questions: (i) can BNN uncertainties be used as an 
indicator of the representativity of the training set for a given data 
set? (ii) can BNN uncertainties replace selection cuts? We address 
these questions in Sections 6.2.1 and 6.2.2 , respectively. The former 
could be useful to choose the set of SED templates to simulate a 
surv e y. As some selection cuts require feature extraction, the latter 
could be valuable to a v oid this time-consuming process by using 
instead classification uncertainties from non-parametric classifiers 
as SNN . 

6.2.1 BNNs uncertainties versus simulation r epr esentativity 
First, we use simulations to assess the expected behaviour of 
uncertainties when training sets are not representative of the testing 
data. 

We examine how the uncertainties change when using the trained 
model in Section 3.6.2 and applied to individual simulations with 
normal Type Ia supernovae and core-collapse SNe generated with 
the V19, SPCC and J17 templates. We expect that the trained model 
is representative of the V19 simulation. This will not be true for J17 
and SPCC. 

We find that both the single seed and ensemble methods have 
accuracies which decrease for J17 and SPCC simulations by 
≈ 0 . 5 per cent for both types of BNNs. We see an increase in 
the mean model uncertainty on classified light curves generated 
with J17 and SPCC, ho we ver this change is within uncertain- 
ties. For both BNNs we find a longer and more significant 
tail for the uncertainty distributions when classifying J17 and 
SPCC simulations (ending at ∼0.4–0.43 compared to ∼0.35 for 
V19). 

Next, we compare uncertainties when classifying DES-SN 5-yr 
data with independent BNN models trained with the V19, J17, and 
SPCC simulations. We find that the mean model uncertainty increases 
for SPCC and J17 classification models for MC dropout but not for 
BBB SPCC model but again within uncertainties. The tail of the 
uncertainties varies between ∼0.40 and 0.47 for all classification 
models. We see a longer tail for the uncertainty distributions for 
BBB but not for MC SPCC classification. 

In summary, we do not find strong evidence of BNN uncertain- 
ties being sensitive to models trained with different core-collapse 
templates. There is a small but inconclusive tendency to increase 
uncertainties for J17 and SPCC in simulations. While these templates 
are different, the changes may be too small to be captured by BNN 
uncertainties. 
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DES-SN 5YR photometrically identified SNe Ia 5169 

MNRAS 514, 5159–5177 (2022) 

Figure 4. Classification uncertainties obtained for BNN ensemble models. 
Columns indicate which sample is used. For each event in a given sample, 
we obtain their classification uncertainties from the two BNN methods, MC 
and BBB (orange and blue, respectively). We show median uncertainties for 
data in circles for: all DES-SN 5-yr data (no selection cuts), and Baseline 
BNN SNIa samples with JLA-like cuts. For comparison, we show in squares 
the median uncertainties obtained for the whole simulation (first column) and 
simulated photometric samples with JLA-like cuts (second column). For both 
the data and simulations, we show as errorbars the extent of the 68 per cent of 
the distribution. The different behaviour of simulated MC uncertainties and 
that of DES-SN 5-yr candidate sample is further studied in Fig. 7 . 
( −) this correlation is not seen in the simulations for any of the 
BNNs. 

b. epistemic uncertainty : linked to training sets or model 
( + ) Large uncertainties are more pre v alent in classification proba- 
bilities far from 1 (high probability of being a SN Ia) and 0 (low 
probability of being SN Ia) for both simulations and DES-SN 5-yr 
data. 
( −) candidates that fulfil selection cuts should more closely resemble 
simulated SNe Ia, thus it is puzzling the increase on median 
uncertainty when applying cuts in particular for the MC method 
(see Fig. 4 ). 

These various behaviour highlights the challenges on quantifying 
uncertainties in complex problems such as astronomical data clas- 
sification. In Appendix A , we explore further correlations between 
classification uncertainties and SALT2 fit light-curve properties. 

We continue exploring the interpretability of the BNNs uncer- 
tainties by adding a threshold on the uncertainties for SNIa sample 
selection, as in M ̈oller & de Boissi ̀ere ( 2019 ) and more recently 
in Butter et al. ( 2022 ). We note that establishing a threshold for 
uncertainties is not straight-forward. While the whole probability 
distribution has a calibration that can be verified using diagnostic 
as reliability diagrams (DeGroot & Fienberg 1983 ; M ̈oller & de 
Boissi ̀ere 2019 ), the probability uncertainties do not. We chose 
to eliminate candidates with the highest uncertainties (eliminating 
candidates that are outside of 99 percentile of the uncertainty 
distribution). This cut rejects candidates that were in the RNN 
sample: 12 for the MC model and 45 for BBB. These candidates are 
not found to be distributed preferentially in a c , x 1 , or redshift. We 
visually inspect these light-curves and found that a large proportion 
have photometry that are outliers. 
5.3 BNN photometric sample contribution 
The SNIa samples obtained using BNN methods are found to be 
similar to the one provided by our Baseline DES-SNIa sample 
in Section 4 . We e v aluate BNN uncertainties and sho w that they 

are consistent between simulations and data in average after JLA- 
like cuts, showing a good agreement between data and simulation 
predictions. Ho we ver, BNN uncertainties are difficult to interpret and 
assess quantitatively (e.g. assigning an uncertainty threshold). 

We find that uncertainties exhibit different behaviours in the two 
BNN methods and between data and simulations. While the higher 
uncertainties in the MC BNN method for the data could point 
towards the presence of out-of-distribution candidates, the evidence 
is not conclusive and is not seen in the BBB method. We will 
further explore the possible contribution of BNNs in photometric 
classification without any selection cuts in Section 6.2 . 

Cuts on uncertainty values potentially impro v e our photometric 
SNIa samples by rejecting candidates with photometry that contains 
outliers. These is a promising avenue shown to improve the quality 
of samples, both in quality of the data and rejection of out-of- 
distribution events, in previous work using simulations M ̈oller & 
de Boissi ̀ere ( 2019 ) and more recently with astronomical data in 
Butter et al. ( 2022 ). 
6  F RO M  D E S  TO  RUBIN  O B S E RVATO RY  LSST  
For the LSST survey, where up 10 7 SNe will be detected over 10 yr, 
photometric classification will become increasingly important. 

In this work, we have presented different methods for photometric 
classification with redshift information. We compare the samples 
obtained with these different methods in Section 6.1 and explore 
possible applications of Bayesian Neural Networks in future surv e ys, 
such as LSST, in Section 6.2 . 
6.1 DES-SNIa photometric samples 
The DES-SN 5-yr data contains thousands of potential SNe Ia. We 
show in Table 7 the different steps used in this work to obtain our 
Baseline DES-SNIa JLA sample from the DES-SN 5-yr candidate 
sample. Cuts applied before photometric classification reduce the 
candidate sample by 90 per cent. Photometric classification and JLA- 
like cuts refine the sample with a small 20 per cent reduction. While 
this reduction is small, it reduces contamination from ∼ 10 per cent 
to below 1.4 per cent, as shown in Vincenzi et al. ( 2022 ) and in 
Section 4 . 

In addition to our Baseline DES-SNIa sample classified using 
RNN probabilities, we hav e e xplored identifying samples with 
Bayesian Neural Networks. We compare these samples with with 
the preliminary DES-SN 5-yr spectroscopically classified SNe Ia 
sample in Fig. 6 . As expected, we find that photometric samples 
using RNNs or BNNs provide larger numbers of SNe Ia than the 
spectroscopic sample, probing a larger parameter space. We do not 
find a substantial difference in the parameter distributions between 
different photometric classification methods. 

We highlight that the photometric samples peak at fainter mag- 
nitudes and higher redshifts than the preliminary DES-SN 5-year 
spectroscopic SNe Ia sample.This has the potential to reduce selec- 
tion biases and opens the possibility of stronger statistical analyses 
with the large numbers of SNe Ia. This will also be true for the 
immense SN samples obtained with LSST. 
6.2 Bayesian Neural Networks as a proxy 
Introduced as a promising method to quantify model uncertainties, 
BNNs have not yet been widely used in classification tasks. In 
Section 5 , we have shown the difficulties for uncertainty interpre- 
tation given the different uncertainty values for the BNN methods. 
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Figure 4. Classification uncertainties obtained for BNN ensemble models. 
Columns indicate which sample is used. For each event in a given sample, 
we obtain their classification uncertainties from the two BNN methods, MC 
and BBB (orange and blue, respectively). We show median uncertainties for 
data in circles for: all DES-SN 5-yr data (no selection cuts), and Baseline 
BNN SNIa samples with JLA-like cuts. For comparison, we show in squares 
the median uncertainties obtained for the whole simulation (first column) and 
simulated photometric samples with JLA-like cuts (second column). For both 
the data and simulations, we show as errorbars the extent of the 68 per cent of 
the distribution. The different behaviour of simulated MC uncertainties and 
that of DES-SN 5-yr candidate sample is further studied in Fig. 7 . 
( −) this correlation is not seen in the simulations for any of the 
BNNs. 

b. epistemic uncertainty : linked to training sets or model 
( + ) Large uncertainties are more pre v alent in classification proba- 
bilities far from 1 (high probability of being a SN Ia) and 0 (low 
probability of being SN Ia) for both simulations and DES-SN 5-yr 
data. 
( −) candidates that fulfil selection cuts should more closely resemble 
simulated SNe Ia, thus it is puzzling the increase on median 
uncertainty when applying cuts in particular for the MC method 
(see Fig. 4 ). 

These various behaviour highlights the challenges on quantifying 
uncertainties in complex problems such as astronomical data clas- 
sification. In Appendix A , we explore further correlations between 
classification uncertainties and SALT2 fit light-curve properties. 

We continue exploring the interpretability of the BNNs uncer- 
tainties by adding a threshold on the uncertainties for SNIa sample 
selection, as in M ̈oller & de Boissi ̀ere ( 2019 ) and more recently 
in Butter et al. ( 2022 ). We note that establishing a threshold for 
uncertainties is not straight-forward. While the whole probability 
distribution has a calibration that can be verified using diagnostic 
as reliability diagrams (DeGroot & Fienberg 1983 ; M ̈oller & de 
Boissi ̀ere 2019 ), the probability uncertainties do not. We chose 
to eliminate candidates with the highest uncertainties (eliminating 
candidates that are outside of 99 percentile of the uncertainty 
distribution). This cut rejects candidates that were in the RNN 
sample: 12 for the MC model and 45 for BBB. These candidates are 
not found to be distributed preferentially in a c , x 1 , or redshift. We 
visually inspect these light-curves and found that a large proportion 
have photometry that are outliers. 
5.3 BNN photometric sample contribution 
The SNIa samples obtained using BNN methods are found to be 
similar to the one provided by our Baseline DES-SNIa sample 
in Section 4 . We e v aluate BNN uncertainties and sho w that they 

are consistent between simulations and data in average after JLA- 
like cuts, showing a good agreement between data and simulation 
predictions. Ho we ver, BNN uncertainties are difficult to interpret and 
assess quantitatively (e.g. assigning an uncertainty threshold). 

We find that uncertainties exhibit different behaviours in the two 
BNN methods and between data and simulations. While the higher 
uncertainties in the MC BNN method for the data could point 
towards the presence of out-of-distribution candidates, the evidence 
is not conclusive and is not seen in the BBB method. We will 
further explore the possible contribution of BNNs in photometric 
classification without any selection cuts in Section 6.2 . 

Cuts on uncertainty values potentially impro v e our photometric 
SNIa samples by rejecting candidates with photometry that contains 
outliers. These is a promising avenue shown to improve the quality 
of samples, both in quality of the data and rejection of out-of- 
distribution events, in previous work using simulations M ̈oller & 
de Boissi ̀ere ( 2019 ) and more recently with astronomical data in 
Butter et al. ( 2022 ). 
6  F RO M  D E S  TO  RUBIN  O B S E RVATO RY  LSST  
For the LSST survey, where up 10 7 SNe will be detected over 10 yr, 
photometric classification will become increasingly important. 

In this work, we have presented different methods for photometric 
classification with redshift information. We compare the samples 
obtained with these different methods in Section 6.1 and explore 
possible applications of Bayesian Neural Networks in future surv e ys, 
such as LSST, in Section 6.2 . 
6.1 DES-SNIa photometric samples 
The DES-SN 5-yr data contains thousands of potential SNe Ia. We 
show in Table 7 the different steps used in this work to obtain our 
Baseline DES-SNIa JLA sample from the DES-SN 5-yr candidate 
sample. Cuts applied before photometric classification reduce the 
candidate sample by 90 per cent. Photometric classification and JLA- 
like cuts refine the sample with a small 20 per cent reduction. While 
this reduction is small, it reduces contamination from ∼ 10 per cent 
to below 1.4 per cent, as shown in Vincenzi et al. ( 2022 ) and in 
Section 4 . 

In addition to our Baseline DES-SNIa sample classified using 
RNN probabilities, we hav e e xplored identifying samples with 
Bayesian Neural Networks. We compare these samples with with 
the preliminary DES-SN 5-yr spectroscopically classified SNe Ia 
sample in Fig. 6 . As expected, we find that photometric samples 
using RNNs or BNNs provide larger numbers of SNe Ia than the 
spectroscopic sample, probing a larger parameter space. We do not 
find a substantial difference in the parameter distributions between 
different photometric classification methods. 

We highlight that the photometric samples peak at fainter mag- 
nitudes and higher redshifts than the preliminary DES-SN 5-year 
spectroscopic SNe Ia sample.This has the potential to reduce selec- 
tion biases and opens the possibility of stronger statistical analyses 
with the large numbers of SNe Ia. This will also be true for the 
immense SN samples obtained with LSST. 
6.2 Bayesian Neural Networks as a proxy 
Introduced as a promising method to quantify model uncertainties, 
BNNs have not yet been widely used in classification tasks. In 
Section 5 , we have shown the difficulties for uncertainty interpre- 
tation given the different uncertainty values for the BNN methods. 
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Figure 4. Classification uncertainties obtained for BNN ensemble models. 
Columns indicate which sample is used. For each event in a given sample, 
we obtain their classification uncertainties from the two BNN methods, MC 
and BBB (orange and blue, respectively). We show median uncertainties for 
data in circles for: all DES-SN 5-yr data (no selection cuts), and Baseline 
BNN SNIa samples with JLA-like cuts. For comparison, we show in squares 
the median uncertainties obtained for the whole simulation (first column) and 
simulated photometric samples with JLA-like cuts (second column). For both 
the data and simulations, we show as errorbars the extent of the 68 per cent of 
the distribution. The different behaviour of simulated MC uncertainties and 
that of DES-SN 5-yr candidate sample is further studied in Fig. 7 . 
( −) this correlation is not seen in the simulations for any of the 
BNNs. 

b. epistemic uncertainty : linked to training sets or model 
( + ) Large uncertainties are more pre v alent in classification proba- 
bilities far from 1 (high probability of being a SN Ia) and 0 (low 
probability of being SN Ia) for both simulations and DES-SN 5-yr 
data. 
( −) candidates that fulfil selection cuts should more closely resemble 
simulated SNe Ia, thus it is puzzling the increase on median 
uncertainty when applying cuts in particular for the MC method 
(see Fig. 4 ). 

These various behaviour highlights the challenges on quantifying 
uncertainties in complex problems such as astronomical data clas- 
sification. In Appendix A , we explore further correlations between 
classification uncertainties and SALT2 fit light-curve properties. 

We continue exploring the interpretability of the BNNs uncer- 
tainties by adding a threshold on the uncertainties for SNIa sample 
selection, as in M ̈oller & de Boissi ̀ere ( 2019 ) and more recently 
in Butter et al. ( 2022 ). We note that establishing a threshold for 
uncertainties is not straight-forward. While the whole probability 
distribution has a calibration that can be verified using diagnostic 
as reliability diagrams (DeGroot & Fienberg 1983 ; M ̈oller & de 
Boissi ̀ere 2019 ), the probability uncertainties do not. We chose 
to eliminate candidates with the highest uncertainties (eliminating 
candidates that are outside of 99 percentile of the uncertainty 
distribution). This cut rejects candidates that were in the RNN 
sample: 12 for the MC model and 45 for BBB. These candidates are 
not found to be distributed preferentially in a c , x 1 , or redshift. We 
visually inspect these light-curves and found that a large proportion 
have photometry that are outliers. 
5.3 BNN photometric sample contribution 
The SNIa samples obtained using BNN methods are found to be 
similar to the one provided by our Baseline DES-SNIa sample 
in Section 4 . We e v aluate BNN uncertainties and sho w that they 

are consistent between simulations and data in average after JLA- 
like cuts, showing a good agreement between data and simulation 
predictions. Ho we ver, BNN uncertainties are difficult to interpret and 
assess quantitatively (e.g. assigning an uncertainty threshold). 

We find that uncertainties exhibit different behaviours in the two 
BNN methods and between data and simulations. While the higher 
uncertainties in the MC BNN method for the data could point 
towards the presence of out-of-distribution candidates, the evidence 
is not conclusive and is not seen in the BBB method. We will 
further explore the possible contribution of BNNs in photometric 
classification without any selection cuts in Section 6.2 . 

Cuts on uncertainty values potentially impro v e our photometric 
SNIa samples by rejecting candidates with photometry that contains 
outliers. These is a promising avenue shown to improve the quality 
of samples, both in quality of the data and rejection of out-of- 
distribution events, in previous work using simulations M ̈oller & 
de Boissi ̀ere ( 2019 ) and more recently with astronomical data in 
Butter et al. ( 2022 ). 
6  F RO M  D E S  TO  RUBIN  O B S E RVATO RY  LSST  
For the LSST survey, where up 10 7 SNe will be detected over 10 yr, 
photometric classification will become increasingly important. 

In this work, we have presented different methods for photometric 
classification with redshift information. We compare the samples 
obtained with these different methods in Section 6.1 and explore 
possible applications of Bayesian Neural Networks in future surv e ys, 
such as LSST, in Section 6.2 . 
6.1 DES-SNIa photometric samples 
The DES-SN 5-yr data contains thousands of potential SNe Ia. We 
show in Table 7 the different steps used in this work to obtain our 
Baseline DES-SNIa JLA sample from the DES-SN 5-yr candidate 
sample. Cuts applied before photometric classification reduce the 
candidate sample by 90 per cent. Photometric classification and JLA- 
like cuts refine the sample with a small 20 per cent reduction. While 
this reduction is small, it reduces contamination from ∼ 10 per cent 
to below 1.4 per cent, as shown in Vincenzi et al. ( 2022 ) and in 
Section 4 . 

In addition to our Baseline DES-SNIa sample classified using 
RNN probabilities, we hav e e xplored identifying samples with 
Bayesian Neural Networks. We compare these samples with with 
the preliminary DES-SN 5-yr spectroscopically classified SNe Ia 
sample in Fig. 6 . As expected, we find that photometric samples 
using RNNs or BNNs provide larger numbers of SNe Ia than the 
spectroscopic sample, probing a larger parameter space. We do not 
find a substantial difference in the parameter distributions between 
different photometric classification methods. 

We highlight that the photometric samples peak at fainter mag- 
nitudes and higher redshifts than the preliminary DES-SN 5-year 
spectroscopic SNe Ia sample.This has the potential to reduce selec- 
tion biases and opens the possibility of stronger statistical analyses 
with the large numbers of SNe Ia. This will also be true for the 
immense SN samples obtained with LSST. 
6.2 Bayesian Neural Networks as a proxy 
Introduced as a promising method to quantify model uncertainties, 
BNNs have not yet been widely used in classification tasks. In 
Section 5 , we have shown the difficulties for uncertainty interpre- 
tation given the different uncertainty values for the BNN methods. 
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Figure 7. Uncertainties obtained with the two BNN methods (MC and BBB) for the DES-SN 5-yr candidate sample, through different selection cuts: multiseason 
filtering, redshifts, SALT2 convergence and JLA-like cuts; and our photometrically identified sample (filled histograms). We show the number of events in the 
y -axis in log scale. MC dropout uncertainties seem to identify those out-of-distribution candidates that have no redshift information (black line) or are filtered 
multiseason events. This secondary peak drives the mean uncertainty behaviour for MC dropout in Fig. 4 . 
of the BNN pitfalls and the difficulty of comparing classification 
uncertainties between variational inference methods. We find that 
the MC dropout BNN provides potentially interpretable uncertainties 
for out-of-distribution event detection and improving the photometric 
sample. This work is the first known application of two BNN methods 
on real astrophysical data for classification tasks. 

This work is part of the DES-SN 5-yr cosmology analysis. We have 
optimized simulations, the SNN architecture, as well as developed 
data pre-processing methods. These methods are a revision from 
those presented in Vincenzi et al. ( 2022 ) where contamination is 
found to be less than 1.4 per cent for photometrically classified sam- 
ples. We find that photometric quality is key for robust classification, 
and an impro v ed sample can be expected from using high-quality 
Scene Modelling Photometry (Brout et al. 2019 ). 

F or future surv e ys such as LSST, photometric classification will 
be key to fully harness the power of these surv e ys. Photometric clas- 
sification with host redshift information will enable using large, low- 
contamination, high-quality samples for measuring cosmological 
parameters. Potentially, MC BNN could provide useful information 
to filter transient samples in large surv e ys. Extensions to this work 
include photometric classification without redshift, which will assist 
in the allocation of follow-up resources for host galaxy redshift 
acquisition (such as Time-Domain Extragalactic Surv e y TiDES; 
Frohmaier et al. in preparation; Swann et al. 2019 ) and for other 
astrophysical studies. 
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BNNs can provide classification uncertainties for time-domain


Should we use these uncertainties for cosmology? Not yet…


- OOD and lack of training set representativity can be reflected


- Some behaviours are unexpected!


- It is hard to know if an uncertainty is “calibrated”


But the uncertainties can be insightful for large dataset analysis!


Summary


