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‣ IRFU: Institute of research into the fundamental laws of the 
Universe

‣ AIM: Astrophysics, Instrumentation and Modelling 
‣ Cosmology 
‣ Galaxy Formation 
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‣ Exo-planets 
‣ High-energy events 
‣ Plans modelling 
‣ Instrumentation (e.g. JWST, Euclid)

‣ CosmoStat: Cosmology and Statistics 
‣ Weak gravitational lensing 
‣ Machine learning 
‣ Signal/image processing 
‣ Inference 
‣ Euclid, Rubin LSST, SKAO, UNIONS
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1. Cosmological motivation
‣ What are the problems we need to solve? 
‣ How does data play a role in this? 
‣ Why do we need AI and how can we trust the results?

2. Weak gravitational lensing
‣ ‘Observing’ invisible matter 
‣ Technical challenges

3. AI for cosmological data analysis

‣ Estimating stellar SEDs from photometric data 
‣ Identify of blended galaxies in survey data 
‣ Going beyond

4. Future perspectives

‣ Where can AI take us? 
‣ Accessible tools 
‣ Conclusions
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Challenges in Cosmology
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Matter Density

Challenges in Cosmology

‣ Baryonic effects? 
‣ Nature of dark matter? 
‣ Nature of dark energy? 
‣ Is 𝚲CDM complete?

‣ Is General Relativity complete? 
‣ New physics to be found? 
‣ Do we really understand systematics? 
‣ Neutrino masses?
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Tension between early and late-times

Early Times

Late Times

Credit: NASA/WMAP
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Age of the UniverseIn the Realm of the Hubble tension � a Review of Solutions 10

Figure 1. Whisker plot with 68% CL constraints of the Hubble constant H0 through
direct and indirect measurements by di↵erent astronomical missions and groups
performed over the years. The cyan vertical band corresponds to the H0 value from
SH0ES Team [2] (R20, H0 = 73.2 ± 1.3 km s�1 Mpc�1 at 68% CL) and the light pink
vertical band corresponds to the H0 value as reported by Planck 2018 team [11] within
a ⇤CDM scenario. A sample code for producing similar figures with any choice of the

data is made publicly available online at github.com/lucavisinelli/H0TensionRealm.
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Mass and Structure of the Universe

S8 Tension

Bouché et al. (2022)
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FIG. 1: Estimates of S8 provided by the two non-local cosmological analyses [56, 98], and the ⇤CDM fit of the CMB [5, 66],
the WL data [18, 20, 80, 83, 84, 99], the combination of WL and galaxy clustering observations [100–102], cluster counting
[19, 87, 88] and RSD surveys [92, 94]. The colored band corresponds to the S8 value derived by the analysis of the Planck–CMB
data in the ⇤CDM framework [5].
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and the RT model is thus safe regarding the time variation of the effective Newton’s constant. Geff indeed reduces
to G at the Solar System scale, while a deviation of ⇠1% rises at cosmological scales.

In [56], the growth rate f(z, k) ⌘ d ln �M/d ln a is also derived. The results do not differ from those of ⇤CDM
cosmology: f(z, k) can be fitted with a k-independent function f(z) = [⌦M (z)]� , where � ' 0.55 is roughly constant.
Accordingly, any possible deviation in the growth of perturbations should be due to the amplitude �8. In order to find
any signature of the non-local model at perturbation level, which could account for the growth tension, the theory was
compared with cosmological observations: Planck–CMB, Pantheon SNIa and SDSS-BAO. The Bayesian parameter
estimation shows a full equivalence between the RT non-local cosmology and the ⇤CDM one. No statistically signifi-
cant deviation in the �8 parameter emerges for any of the tested versions of the Ricci-Transverse model. Eventually,
this theory cannot alleviate the growth tension, as shown in Figure 1.

V. HUBBLE TENSION IN LIGHT OF THE NON-LOCAL MODELS

Hubble tension is certainly the most renowned and significant tension of the ⇤CDM model. It emerges from the
comparison between early-time and late-time measurements of the Hubble constant. From one side, CMB analysis
[5, 66, 105–108], BAO surveys [6, 101, 109, 110] with standard BBN constraints [111] and combinations of CMB,
BAO, SNIa [112], RSD and cosmic shear data [78, 113, 114] point towards lower values of H0 (H0 = 67.4 ± 0.5 km
s�1Mpc�1 from Planck 2018 [5]). On the other side, the local measurements based on standard candles prefer higher
values for the Hubble constant [115] (H0 = 73.04± 1.04 km s�1Mpc�1 from SH0ES 2022 [17]). The main results are
achieved by the SH0ES collaboration using Hubble Space Telescope observations: on the one hand, they analyzed
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Fig. H.1. Variation in recovered En

cosmological constraints for Σ8 (left)
and S 8 (right) when moving between
KiDS-1000 and KiDS-Legacy analy-
ses, relative to the constraints from
Planck (red). Each point is anno-
tated with the Hellinger tension be-
tween the marginal constraint and
that of Planck.

but do not lead to a significant change in the estimated cos-
mological parameters. As such, our Hellinger distance with
Planck increases with these additions, to 1.40ω consistency
in Σ8 and 1.00ω consistency in S 8.

H.1.5 Additional Legacy area

Finally, we add the data back into Legacy that resides out-
side the footprint of KiDS-1000, and recover our fiducial
result, which exhibits a 0.73ω consistency in Σ8 and 0.74ω
consistency in S 8. This demonstrates that there is a non-
negligible statistical noise component in the di!erence be-
tween the sources probed within the footprint of KiDS-1000
and over the final KiDS-Legacy area.

H.2 Expanded scale cuts

Post unblinding, we discovered a typographical error in the
pipeline which performed the measurement of correlation
functions with expanded scale cuts (Sect. 5.2.7). This error
meant that the pre-unblinding measurements were made
with uncalibrated shapes directly from our shape mea-
surement code lensfit, rather than with the recalibrated
shapes (Sect. 3.5). We reran the expanded scale cut analysis
with the correct recalibrated shapes post-unblinding, find-
ing that the consistency between the analyses with fiducial
and expanded scale cuts improved from 0.3ω to 0.15ω with
the use of the correct shapes. No conclusions were changed
as a result of this error.

H.3 Iterative covariances

All fiducial chains were recomputed using our iterative co-
variance framework post-unblinding. This was a conscious
pre-unblinding choice, as the iterative covariances require
non-negligible CPU time for the computation of MAP and
new covariances. We find that this process has a negligi-
ble impact on our constraints (see Sect. 5.2.3), and thus

does not represent a possible source of bias in our blinded
analysis.

Article number, page 40 of 40

Wright et al. (2022)S8 = σ8 Ωm/0.3

KiDS Legacy
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Missions

Euclid Rubin

Roman

DESI

CMB-S4SKAO LISA

SIMONS

~2-5 PB ~1 PB ~10-20 PB ~30-60 PB

~20-40 PB ~600 PB/year ~10-15 PB ~1-2 PB
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1. Cosmological motivation
‣ What are the problems we need to solve? 
‣ How does data play a role in this? 
‣ Why do we need AI and how can we trust the results?

3. AI for cosmological data analysis

‣ Estimating stellar SEDs from photometric data 
‣ Identify of blended galaxies in survey data 
‣ Going beyond

4. Future perspectives

‣ Where can AI take us? 
‣ Accessible tools 
‣ Conclusions

2. Weak gravitational lensing
‣ ‘Observing’ invisible matter 
‣ Technical challenges



2. Weak gravitational lensing
‣ ‘Observing’ invisible matter 
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Weak Lensing
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General Relativity

Albert Einstein

Rμν − 1
2 Rgμν + Λgμν = 8πG

c4 Tμν
‘Spacetime tells matter how to move; 
matter tells spacetime how to curve.’ 
- John Wheeler

Weak Lensing
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Albert Einstein

True position

Observed position

Eddington experiment 1919

Eddington Dyson

General Relativity

M⊙ = 1.9885 × 1030 kg

Δθ = 1.75′ ′ 

Hyades

Weak Lensing
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Gravitational Lensing

Dark Matter

Original galaxy

Lensed image

Lensed image

Weak Lensing
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Strong Gravitational Lensing

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, T. Li

NGC 6505 Einstein Ring

Weak Lensing
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Credit: NASA's Goddard Space Flight Center Conceptual Image Lab Credit: ESA/Hubble (M. Kornmesser & L. L. Christensen)

Weak Gravitational Lensing

Weak Lensing

http://www.esa.int/
http://www.spacetelescope.org/
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Weak Gravitational Lensing

Weak Lensing

Dark Matter

Randomly Distributed Sheared by Dark MatterEllipticity
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Weak Gravitational Lensing

‣ Consider all galaxies and all the matter the 
light encounters along the line of sight 

‣ Measure the shapes of galaxies to infer the 
amount of (mostly dark) matter needed to 
induce the ‘squishing’ we observe 

‣ There is a ~1% change to the shape on 
average 

‣ Use the statistics of millions of galaxies to put 
constraints on cosmological parameters and 
hence determine the amount of dark matter 
in the Universe 

Weak Lensing
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Raw images Reduced images Masking Source detection

Source selection

PSF estimationPSF validationShape measurementShape calibrationCosmology

Photo-z

Just an illustration. 
Many steps not listed 
and order of steps 
more nuanced in 
reality.

Photometry

Lots of Software!
We need to be able 
to trust and 
understand all of 
these steps

Weak Lensing
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Weak Lensing

A brief tour of where things can go wrong

Telescope

Source Galaxy

Detector

Sources of bias 
‣ Pixelisation 
‣ Point Spread Function (PSF) 
‣ Noise 
‣ Charge Transfer Inefficiency 

PSF
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Weak Lensing
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Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Detection 
‣ Blending 
‣ Masking 

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi
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Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Detection 
‣ Blending 
‣ Masking 

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi

Star

Galaxy
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Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Detection 
‣ Blending 
‣ Masking 

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi

Star

Galaxy



22

Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Detection 
‣ Blending 
‣ Masking 

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre, E. Bertin, G. Anselmi

Star

Galaxy



23

Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Model 
‣ Selection

Good model

Bad Model

Model Fitting Source Selection
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Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Model 
‣ Selection

Good model

Bad Model

Model Fitting Source Selection
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Weak Lensing

A brief tour of where things can go wrong

Sources of bias 
‣ Theoretical modelling 
‣ Parameter inference

Summary Statistics

Ωm

S8

ℓ

Cγγ
ℓ
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1. Cosmological motivation
‣ What are the problems we need to solve? 
‣ How does data play a role in this? 
‣ Why do we need AI and how can we trust the results?

3. AI for cosmological data analysis

‣ Estimating stellar SEDs from photometric data 
‣ Identify of blended galaxies in survey data 
‣ Going beyond

4. Future perspectives

‣ Where can AI take us? 
‣ Accessible tools 
‣ Conclusions

2. Weak gravitational lensing
‣ ‘Observing’ invisible matter 
‣ Technical challenges
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3. AI for cosmological data analysis

‣ Estimating stellar SEDs from photometric data 
‣ Identify of blended galaxies in survey data 
‣ Going beyond
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(a)

(b)

Fig. 5. WaveDi↵ simulations. (a) Wavefront error, noiseless star obser-
vation and noisy star observation at a particular position in the FOV for
a simulated PSF field. (b) Monochromatic PSFs for multiple wavelength
values.

5.1. WaveDiff PSF simulator

Figure 5 shows di↵erent components of the PSF simulator: the
WFE, monochromatic PSFs and the star observations (with and
without noise). First, the WFE for a random position in the
FOV is shown in the first column of the top panel. Then, eight
monochromatic PSFs computed from the aforementioned WFE
are shown in the bottom panel. Finally, the middle and right hand
side columns of the top panel show an example of a star obser-
vation with and without added noise.

The noise is modelled pixel-wise by an additive independent
Gaussian random variable of zero mean and standard deviation
�S/N . The total amount of noise added to a simulated observa-
tion depends on the desired signal-to-noise ratio S/N (defined

as Liaudat et al. (2023a)) as follows,

�2
S/N =

kIstar(ū, v̄|ui, vi)k2ūv

S/N N2
pix

, (6)

where Npix is the stamp size (width and height) of the simulated
star observations. And k · k2ūv is the Frobenius matrix squared
norm as defined in Eq. 5.

5.2. SED templates

The PSF simulator allows us to obtain monochromatic PSFs
from the simulated WFE at any position in the FOV. To simu-
late a stellar observation, we sum the monochromatic PSFs over
the wavelength weighted by the SED of the star as described
by Eq. 2. Therefore, we need the spectral information of the
stars. For this, we use 13 SED templates from Pickles (1998)
corresponding to the following star types: O5, B0, B5, A0, A5,
F0, F5, G0, G5, K0, K5, M0 and M5. The spectra are limited
to the passband of the Euclid VIS instrument (Euclid Collabo-
ration et al. 2024a), from 550 to 900 nm, to simulate Euclid-
like star observations. In Fig. 6, we present the flux-normalised
spectrum template fstar(�) for each stellar type. To obtain the ob-
served star simulation as described in Eq. 2, we compute the
discrete SED of the star by integrating the spectrum over n� reg-
ular wavelength bins bk, matching the number of monochromatic
PSFs. The centre of each bin corresponds to the wavelength of
4 https://github.com/CosmoStat/wf-psf

Fig. 6. Spectral templates for the 13 stellar classes taken from Pickles
(1998). Spectra are limited to a Euclid-like passband [550 � 900] nm,
with a resolution of 1 nm. Spectra are flux normalised to unit sum.

each monochromatic PSF. The bins, of size �bk are computed as
follows,

SEDbk (�k) =
1

wbk

Z �k+�bk/2

�k��bk/2
fstar(�)d�, (7)

where wbk normalises the bin such that
Pn�

k=1 SEDbk (�k) = 1.

5.3. Simulation parameters

The simulations used in this work are built from a random re-
alisation of a WaveDi↵ PSF field, mainly governed by the fol-
lowing parameters: nZ , the maximum Zernike order in the WFE
representation; dmax, the degree of the polynomial variation of
the Zernike coe�cients Ck(x, y) across the FOV; n�, the number
of spectral bins, which corresponds to the number of monochro-
matic PSFs and SED bins; and S/N, the signal-to-noise-ratio
range for the stellar observations. The selection of these param-
eters depends mainly on the telescope that is taken as a refer-
ence for simulating the PSF and corresponding observations.
The trade-o↵ between the closeness of the simulations to real
observations, and the available memory resources and comput-
ing power is also taken into consideration. We consider for the
WFE a maximum Zernike order dZ = 45 and a polynomial spa-
tial variation of its coe�cients of degree dmax = 4. The num-
ber of spectral bins to be used is limited by the computational
resources and the resolution of the available SEDs. For each
wavelength value of the SED, the monochromatic PSF must be
computed. Therefore, a larger number of bins requires a linear
increase in time and memory resources. However, a larger num-
ber of bins allows for more realistic simulations, thereby making
Eq. 2 a closer approximation to Eq. 1. Simulated observations
are generated with 8 spectral bins to speed up the computation
time for both the generation of the observations and the training
of the PSF models. For the results shown in the following sec-
tions, we consider that 8 bins are su�cient to capture the spec-
tral information of the star in the single band simulated observa-
tion. Furthermore, Fig. 4 demonstrates a clear visual separation
of spectral classes based on the computed similarity features,
further supporting that 8 spectral bins provide su�cient resolu-
tion for our simulations. Finally, we vary the additive noise level
for each simulated star so that the signal-to-noise ratio falls in
the range [20 � 110], which corresponds to standard deviation
of the Gaussian additive noise � falling approximately in the
range (10�3; 2 ⇥ 10�3). The pre-noise observations produced by
WaveDi↵ are flux-normalised to one (i.e. the sum of the pixels
is equal to one). Table 1 summarises the values selected for the
simulation parameters, as well as other relevant features of the

Article number, page 6 of 15

Flux-normalised spectral templates for 13 stellar classes (Pickles 1998)Euclid early commissioning VIS instrument 
image © ESA/Euclid/Euclid Consortium/NASA

SED Classification

27

Breaking the degeneracy in stellar spectral classification from single wide-band images 
‣ Ezequiel Centofanti, Samuel Farrens, Jean-Luc Starck, Tobias Liaudat, Alex Szapiro, Jennifer Pollack 
‣ Published in A&A in 2025 [arxiv.org/abs/2501.16151]

J. PollackA. Szapiro

Estimate of stellar Spectral Energy Distribution (SED)

E. Centofanti 

https://arxiv.org/abs/2501.16151
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5.1. WaveDiff PSF simulator

Figure 5 shows di↵erent components of the PSF simulator: the
WFE, monochromatic PSFs and the star observations (with and
without noise). First, the WFE for a random position in the
FOV is shown in the first column of the top panel. Then, eight
monochromatic PSFs computed from the aforementioned WFE
are shown in the bottom panel. Finally, the middle and right hand
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vation with and without added noise.

The noise is modelled pixel-wise by an additive independent
Gaussian random variable of zero mean and standard deviation
�S/N . The total amount of noise added to a simulated observa-
tion depends on the desired signal-to-noise ratio S/N (defined

as Liaudat et al. (2023a)) as follows,

�2
S/N =
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each monochromatic PSF. The bins, of size �bk are computed as
follows,

SEDbk (�k) =
1

wbk

Z �k+�bk/2

�k��bk/2
fstar(�)d�, (7)

where wbk normalises the bin such that
Pn�

k=1 SEDbk (�k) = 1.

5.3. Simulation parameters

The simulations used in this work are built from a random re-
alisation of a WaveDi↵ PSF field, mainly governed by the fol-
lowing parameters: nZ , the maximum Zernike order in the WFE
representation; dmax, the degree of the polynomial variation of
the Zernike coe�cients Ck(x, y) across the FOV; n�, the number
of spectral bins, which corresponds to the number of monochro-
matic PSFs and SED bins; and S/N, the signal-to-noise-ratio
range for the stellar observations. The selection of these param-
eters depends mainly on the telescope that is taken as a refer-
ence for simulating the PSF and corresponding observations.
The trade-o↵ between the closeness of the simulations to real
observations, and the available memory resources and comput-
ing power is also taken into consideration. We consider for the
WFE a maximum Zernike order dZ = 45 and a polynomial spa-
tial variation of its coe�cients of degree dmax = 4. The num-
ber of spectral bins to be used is limited by the computational
resources and the resolution of the available SEDs. For each
wavelength value of the SED, the monochromatic PSF must be
computed. Therefore, a larger number of bins requires a linear
increase in time and memory resources. However, a larger num-
ber of bins allows for more realistic simulations, thereby making
Eq. 2 a closer approximation to Eq. 1. Simulated observations
are generated with 8 spectral bins to speed up the computation
time for both the generation of the observations and the training
of the PSF models. For the results shown in the following sec-
tions, we consider that 8 bins are su�cient to capture the spec-
tral information of the star in the single band simulated observa-
tion. Furthermore, Fig. 4 demonstrates a clear visual separation
of spectral classes based on the computed similarity features,
further supporting that 8 spectral bins provide su�cient resolu-
tion for our simulations. Finally, we vary the additive noise level
for each simulated star so that the signal-to-noise ratio falls in
the range [20 � 110], which corresponds to standard deviation
of the Gaussian additive noise � falling approximately in the
range (10�3; 2 ⇥ 10�3). The pre-noise observations produced by
WaveDi↵ are flux-normalised to one (i.e. the sum of the pixels
is equal to one). Table 1 summarises the values selected for the
simulation parameters, as well as other relevant features of the
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(a)

(b)

Fig. 5. WaveDi↵ simulations. (a) Wavefront error, noiseless star obser-
vation and noisy star observation at a particular position in the FOV for
a simulated PSF field. (b) Monochromatic PSFs for multiple wavelength
values.

5.1. WaveDiff PSF simulator

Figure 5 shows di↵erent components of the PSF simulator: the
WFE, monochromatic PSFs and the star observations (with and
without noise). First, the WFE for a random position in the
FOV is shown in the first column of the top panel. Then, eight
monochromatic PSFs computed from the aforementioned WFE
are shown in the bottom panel. Finally, the middle and right hand
side columns of the top panel show an example of a star obser-
vation with and without added noise.

The noise is modelled pixel-wise by an additive independent
Gaussian random variable of zero mean and standard deviation
�S/N . The total amount of noise added to a simulated observa-
tion depends on the desired signal-to-noise ratio S/N (defined

as Liaudat et al. (2023a)) as follows,

�2
S/N =

kIstar(ū, v̄|ui, vi)k2ūv

S/N N2
pix

, (6)

where Npix is the stamp size (width and height) of the simulated
star observations. And k · k2ūv is the Frobenius matrix squared
norm as defined in Eq. 5.

5.2. SED templates

The PSF simulator allows us to obtain monochromatic PSFs
from the simulated WFE at any position in the FOV. To simu-
late a stellar observation, we sum the monochromatic PSFs over
the wavelength weighted by the SED of the star as described
by Eq. 2. Therefore, we need the spectral information of the
stars. For this, we use 13 SED templates from Pickles (1998)
corresponding to the following star types: O5, B0, B5, A0, A5,
F0, F5, G0, G5, K0, K5, M0 and M5. The spectra are limited
to the passband of the Euclid VIS instrument (Euclid Collabo-
ration et al. 2024a), from 550 to 900 nm, to simulate Euclid-
like star observations. In Fig. 6, we present the flux-normalised
spectrum template fstar(�) for each stellar type. To obtain the ob-
served star simulation as described in Eq. 2, we compute the
discrete SED of the star by integrating the spectrum over n� reg-
ular wavelength bins bk, matching the number of monochromatic
PSFs. The centre of each bin corresponds to the wavelength of
4 https://github.com/CosmoStat/wf-psf

Fig. 6. Spectral templates for the 13 stellar classes taken from Pickles
(1998). Spectra are limited to a Euclid-like passband [550 � 900] nm,
with a resolution of 1 nm. Spectra are flux normalised to unit sum.

each monochromatic PSF. The bins, of size �bk are computed as
follows,

SEDbk (�k) =
1

wbk

Z �k+�bk/2

�k��bk/2
fstar(�)d�, (7)

where wbk normalises the bin such that
Pn�

k=1 SEDbk (�k) = 1.

5.3. Simulation parameters

The simulations used in this work are built from a random re-
alisation of a WaveDi↵ PSF field, mainly governed by the fol-
lowing parameters: nZ , the maximum Zernike order in the WFE
representation; dmax, the degree of the polynomial variation of
the Zernike coe�cients Ck(x, y) across the FOV; n�, the number
of spectral bins, which corresponds to the number of monochro-
matic PSFs and SED bins; and S/N, the signal-to-noise-ratio
range for the stellar observations. The selection of these param-
eters depends mainly on the telescope that is taken as a refer-
ence for simulating the PSF and corresponding observations.
The trade-o↵ between the closeness of the simulations to real
observations, and the available memory resources and comput-
ing power is also taken into consideration. We consider for the
WFE a maximum Zernike order dZ = 45 and a polynomial spa-
tial variation of its coe�cients of degree dmax = 4. The num-
ber of spectral bins to be used is limited by the computational
resources and the resolution of the available SEDs. For each
wavelength value of the SED, the monochromatic PSF must be
computed. Therefore, a larger number of bins requires a linear
increase in time and memory resources. However, a larger num-
ber of bins allows for more realistic simulations, thereby making
Eq. 2 a closer approximation to Eq. 1. Simulated observations
are generated with 8 spectral bins to speed up the computation
time for both the generation of the observations and the training
of the PSF models. For the results shown in the following sec-
tions, we consider that 8 bins are su�cient to capture the spec-
tral information of the star in the single band simulated observa-
tion. Furthermore, Fig. 4 demonstrates a clear visual separation
of spectral classes based on the computed similarity features,
further supporting that 8 spectral bins provide su�cient resolu-
tion for our simulations. Finally, we vary the additive noise level
for each simulated star so that the signal-to-noise ratio falls in
the range [20 � 110], which corresponds to standard deviation
of the Gaussian additive noise � falling approximately in the
range (10�3; 2 ⇥ 10�3). The pre-noise observations produced by
WaveDi↵ are flux-normalised to one (i.e. the sum of the pixels
is equal to one). Table 1 summarises the values selected for the
simulation parameters, as well as other relevant features of the
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Data-driven PSF modelling
‣ Accurate modelling of the point spread function (PSF) is 

critically important for galaxy shape measurement and 
hence weak-lensing analyses 

‣ Parametric modelling of (in particular) space-based 
telescopes (like Euclid) is very challenging 

‣ The data-driven wavefront-based WaveDiff software 
(Liaudat et al. 2023) requires stellar SEDs to model the 
PSF 

‣ We won’t have spectra for all the stars in the field 

‣ Can we do better if we can estimate SEDs from the star 
images?

Liaudat et al. (2023) [arxiv.org/abs/2203.04908]

github.com/CosmoStat/wf-psf

WaveDiff

J. Pollack E. CentofantiN. MoukaddemT. Liaudat

https://github.com/CosmoStat/wf-psf
http://arxiv.org/abs/2203.04908


SED Classification

29

E. Centofanti: PSF-aware spectral classification

(a)

(b)

Fig. 1. PCA decomposition of input stars. (a) First seven PCA compo-
nents and PCA mean. (b) Original star observation and its reconstruc-
tion from the first 24 PCA components. The last figure in the lower
panel shows the relative values of the coe�cients associated with the
24 PCA components.

Equation 1 describes the observational model of an unre-
solved star. The PSF of a telescope at the position of the star in
the FOV is integrated alongside the SED of the given star. Thus,
the observation is directly a↵ected by the spectrum of the star.
O-type stars, being hotter and bluer, have higher flux at shorter
wavelengths. Conversely, M-type stars, being cooler and redder,
have a higher flux at longer wavelengths. The fact that the PSF
has a chromatic variation allows some of the spectral informa-
tion of the stars to permeate into the observations, meaning that
di↵erent types of stars at the same position in the FOV will pro-
duce di↵erent observations. Hence, a spectral classification of
stars from their polychromatic (wavelength integrated or single-
band) observations is physically supported.

3. Star classification from a single wide band

In the following we present some methods of stellar classifica-
tion from single wide-band star observations. The objective of
these classification methods is to assign SED templates to the
stars without spectral information using the pixels in the corre-
sponding postage stamps. For all of the methods, we assume a
scenario in which, given an exposure of a Euclid-like telescope,
source detection is performed with a tool, such as SExtractor
(Bertin & Arnouts 1996), SFIND (Hopkins et al. 2002) or IM-
SAD (Sault et al. 1995). Then, these sources are e�ciently clas-
sified as stars or galaxies, and postage stamps are extracted at
the positions of the stars. For the purpose of this work, sources
of contamination in the star selection such as galaxies, binaries,
or other misclassifications are not considered. We expect only a
small fraction of the detected stars to have spectral information
(SEDs) available from complementary measurements.

32x32 12x12 10x10x32 8x8x32 6x6x32 4x4x32 2x2x32 32

CNNCrop
Input

MLP
Softmax

Fig. 2. CNN+MLP model diagram. In light blue the convolutional
blocks. In yellow the multi-layer perceptron classifier.

3.1. PCA MLP

The method proposed by Kuntzer et al. (2016) can be separated
into two steps: the preprocessing of the input data and the ac-
tual spectral classification. The first step aims to extract rele-
vant structure from the observations by compressing the input
into a reduced number of coe�cients. This is done by applying
PCA to project the input onto 24 orthogonal components (i.e.
the PCA coe�cients). The second step implements a fully con-
nected MLP neural network (Bishop 1995) classifier that takes
as input the 24 PCA coe�cients associated with the star image to
be classified, and outputs the predicted spectral class among the
13 spectral classes considered (Pickles 1998). We implemented
this method from scratch2 and adapted it to our synthetic star
observations (see Sect. 5). We use 10 000 simulated stars to
obtain the PCA components and train the MLP classifier. We
present the first seven PCA components as well as the dataset
mean in the top panel (a) of Fig. 1. In the bottom panel (b), we
show a star observation and its reconstruction from the first 24
PCA components. The relative values of the 24 coe�cients are
shown in the last figure in the lower panel. The reconstruction
maintains the overall shape of the observed star filtering out the
high frequency variations. In other words, the observation is de-
noised. This process significantly reduces the size of the data,
compressing the 32 ⇥ 32 px images (1 024 pixels) into 24 coef-
ficients. As in Kuntzer et al. (2016), we train a committee of 48
networks from which we compute the ensemble average of the
predictions, allowing us to obtain a more robust classification.
Each MLP classifier has two hidden layers of 26 nodes each.

3.2. CNN MLP

Convolutional neural networks (Krizhevsky et al. 2012; LeCun
et al. 1989) are widely used for recognising structure in two-
dimensional data and have been widely applied to astronomical
data (Akhaury et al. 2022; Farrens et al. 2022; Schaefer et al.
2018; Schuldt et al. 2021). It has been shown that the first con-
volutional filters of well trained CNNs resemble classical image
processing filters (Zeiler et al. 2011; Zeiler & Fergus 2013), and
are able to identify patterns and the multi-scale structure of im-
ages. Auto-encoder networks (Baldi 2012; Kramer 1991) extract
relevant features of the data, encoding the input into a reduced
number of values. In a similar approach, we propose to replace
the PCA preprocessing step in the Kuntzer et al. (2016) approach
with an encoder-like CNN network, keeping the same two-step
process: preprocessing and classification.

Figure 2 shows the proposed architecture for the classifier.
The first layer centre-crops the star observations to get rid of
pixels that only contain noise, reducing the size of the input.
Then, the cropped image passes through six convolutional lay-
ers. Each layer has 32 channels and gradually reduces the width
and height of the data. The convolutional kernel size is 3 ⇥ 3,
2 The code is available here:

https://github.com/CentofantiEze/sed_spectral_classification
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(a)

(b)

Fig. 5. WaveDi↵ simulations. (a) Wavefront error, noiseless star obser-
vation and noisy star observation at a particular position in the FOV for
a simulated PSF field. (b) Monochromatic PSFs for multiple wavelength
values.

5.1. WaveDiff PSF simulator

Figure 5 shows di↵erent components of the PSF simulator: the
WFE, monochromatic PSFs and the star observations (with and
without noise). First, the WFE for a random position in the
FOV is shown in the first column of the top panel. Then, eight
monochromatic PSFs computed from the aforementioned WFE
are shown in the bottom panel. Finally, the middle and right hand
side columns of the top panel show an example of a star obser-
vation with and without added noise.

The noise is modelled pixel-wise by an additive independent
Gaussian random variable of zero mean and standard deviation
�S/N . The total amount of noise added to a simulated observa-
tion depends on the desired signal-to-noise ratio S/N (defined

as Liaudat et al. (2023a)) as follows,

�2
S/N =

kIstar(ū, v̄|ui, vi)k2ūv

S/N N2
pix

, (6)

where Npix is the stamp size (width and height) of the simulated
star observations. And k · k2ūv is the Frobenius matrix squared
norm as defined in Eq. 5.

5.2. SED templates

The PSF simulator allows us to obtain monochromatic PSFs
from the simulated WFE at any position in the FOV. To simu-
late a stellar observation, we sum the monochromatic PSFs over
the wavelength weighted by the SED of the star as described
by Eq. 2. Therefore, we need the spectral information of the
stars. For this, we use 13 SED templates from Pickles (1998)
corresponding to the following star types: O5, B0, B5, A0, A5,
F0, F5, G0, G5, K0, K5, M0 and M5. The spectra are limited
to the passband of the Euclid VIS instrument (Euclid Collabo-
ration et al. 2024a), from 550 to 900 nm, to simulate Euclid-
like star observations. In Fig. 6, we present the flux-normalised
spectrum template fstar(�) for each stellar type. To obtain the ob-
served star simulation as described in Eq. 2, we compute the
discrete SED of the star by integrating the spectrum over n� reg-
ular wavelength bins bk, matching the number of monochromatic
PSFs. The centre of each bin corresponds to the wavelength of
4 https://github.com/CosmoStat/wf-psf

Fig. 6. Spectral templates for the 13 stellar classes taken from Pickles
(1998). Spectra are limited to a Euclid-like passband [550 � 900] nm,
with a resolution of 1 nm. Spectra are flux normalised to unit sum.

each monochromatic PSF. The bins, of size �bk are computed as
follows,

SEDbk (�k) =
1

wbk

Z �k+�bk/2

�k��bk/2
fstar(�)d�, (7)

where wbk normalises the bin such that
Pn�

k=1 SEDbk (�k) = 1.

5.3. Simulation parameters

The simulations used in this work are built from a random re-
alisation of a WaveDi↵ PSF field, mainly governed by the fol-
lowing parameters: nZ , the maximum Zernike order in the WFE
representation; dmax, the degree of the polynomial variation of
the Zernike coe�cients Ck(x, y) across the FOV; n�, the number
of spectral bins, which corresponds to the number of monochro-
matic PSFs and SED bins; and S/N, the signal-to-noise-ratio
range for the stellar observations. The selection of these param-
eters depends mainly on the telescope that is taken as a refer-
ence for simulating the PSF and corresponding observations.
The trade-o↵ between the closeness of the simulations to real
observations, and the available memory resources and comput-
ing power is also taken into consideration. We consider for the
WFE a maximum Zernike order dZ = 45 and a polynomial spa-
tial variation of its coe�cients of degree dmax = 4. The num-
ber of spectral bins to be used is limited by the computational
resources and the resolution of the available SEDs. For each
wavelength value of the SED, the monochromatic PSF must be
computed. Therefore, a larger number of bins requires a linear
increase in time and memory resources. However, a larger num-
ber of bins allows for more realistic simulations, thereby making
Eq. 2 a closer approximation to Eq. 1. Simulated observations
are generated with 8 spectral bins to speed up the computation
time for both the generation of the observations and the training
of the PSF models. For the results shown in the following sec-
tions, we consider that 8 bins are su�cient to capture the spec-
tral information of the star in the single band simulated observa-
tion. Furthermore, Fig. 4 demonstrates a clear visual separation
of spectral classes based on the computed similarity features,
further supporting that 8 spectral bins provide su�cient resolu-
tion for our simulations. Finally, we vary the additive noise level
for each simulated star so that the signal-to-noise ratio falls in
the range [20 � 110], which corresponds to standard deviation
of the Gaussian additive noise � falling approximately in the
range (10�3; 2 ⇥ 10�3). The pre-noise observations produced by
WaveDi↵ are flux-normalised to one (i.e. the sum of the pixels
is equal to one). Table 1 summarises the values selected for the
simulation parameters, as well as other relevant features of the
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Istar(ū, v̄ |ui, vi) =
nλ

∑
k=1

SED(λk) H(ū, v̄; λk |ui, vi) + N
PSF NoiseStar Image SED

WaveDiff Star Image Simulator Convolutional Neural Network (CNN)

‣ Train with simulated star images with known SEDs 

‣ Compare performance with PCA + CNN results 
presented in Kuntzer et al. (2016) 

‣ Results were very consistent, but both approaches 
run into an inherent limitation
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Degeneracy between the PSF and the stellar SED

Figure 2.3: (a) Middle rows: monochromatic PSFs for two positions in the FOV.
The PSFs are shown for eight equally spaced wavelength values. Top and bottom:
8-bins spectral energy distribution of two stars, a M5 star (top) and an O5 star
(bottom), located at positions 1 and 2 respectively. The wavelength axis is shared
between all rows. (b) Observation of the respective stars.

not addressed since these methods rely solely on the star image pixels for the
classification, and do not include any information on the underlying PSF model
corresponding to the observations. As a result, this degeneracy sets a cap on the
classification accuracy of these types of methods. To illustrate this issue, consider
the example shown in 2.3. The left hand side (a) of the figure presents two different
monochromatic PSFs (PSF1 and PSF2) at two different positions in the FOV. The
chromatic variation of the PSFs is shown for 8 different equally spaced wavelength
values. Suppose that in each FOV position we observe an unresolved star. At
FOV position 1 (top half of the figure) a M5-type (red) star is observed, whose
8-bin SED is shown in the top panel. At FOV position 2 (bottom half of the figure)
an O5-type (blue) star is found, with its corresponding 8-bin SED in the bottom
panel. According to a discrete version of 2.1, where the integral is approximated
by a summation, the star observations are the sum of the monochromatic PSFs
weighted by the corresponding SED values (see 2.2). The fact that PSF1 at
long wavelengths is similar in size to PSF2 at shorter wavelengths produces
observations of similarly shaped stars, even if they correspond to completely
different stellar types. The right hand side of the figure (b) shows the corresponding
observed stars. The observed star 2 has a similar, if not larger, size than star 1. In
principle we would associate a larger shape with a redder (M-type) star3, which is
the opposite of what is shown in this example.

3It is important to note that the observed stars are unresolved and therefore appear as
point sources. The apparent sizes discussed here are due to the PSF at different positions
in the FOV and at different wavelengths, not the physical sizes of the stars themselves.

28

Monochromatic PSFs for two positions in the FOV and 8-bins spectral energy distribution of two stars, a M5 
star (top) and an O5 star (bottom)

‣ It is difficult to disentangle the PSF size from the contribution of the SED in the observer stars 

‣ The CNN (or any other) will struggle to learn appropriate labels for the images

E. Centofanti (PhD)
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Degeneracy between the PSF and the stellar SED

Figure 2.3: (a) Middle rows: monochromatic PSFs for two positions in the FOV.
The PSFs are shown for eight equally spaced wavelength values. Top and bottom:
8-bins spectral energy distribution of two stars, a M5 star (top) and an O5 star
(bottom), located at positions 1 and 2 respectively. The wavelength axis is shared
between all rows. (b) Observation of the respective stars.

not addressed since these methods rely solely on the star image pixels for the
classification, and do not include any information on the underlying PSF model
corresponding to the observations. As a result, this degeneracy sets a cap on the
classification accuracy of these types of methods. To illustrate this issue, consider
the example shown in 2.3. The left hand side (a) of the figure presents two different
monochromatic PSFs (PSF1 and PSF2) at two different positions in the FOV. The
chromatic variation of the PSFs is shown for 8 different equally spaced wavelength
values. Suppose that in each FOV position we observe an unresolved star. At
FOV position 1 (top half of the figure) a M5-type (red) star is observed, whose
8-bin SED is shown in the top panel. At FOV position 2 (bottom half of the figure)
an O5-type (blue) star is found, with its corresponding 8-bin SED in the bottom
panel. According to a discrete version of 2.1, where the integral is approximated
by a summation, the star observations are the sum of the monochromatic PSFs
weighted by the corresponding SED values (see 2.2). The fact that PSF1 at
long wavelengths is similar in size to PSF2 at shorter wavelengths produces
observations of similarly shaped stars, even if they correspond to completely
different stellar types. The right hand side of the figure (b) shows the corresponding
observed stars. The observed star 2 has a similar, if not larger, size than star 1. In
principle we would associate a larger shape with a redder (M-type) star3, which is
the opposite of what is shown in this example.

3It is important to note that the observed stars are unresolved and therefore appear as
point sources. The apparent sizes discussed here are due to the PSF at different positions
in the FOV and at different wavelengths, not the physical sizes of the stars themselves.

28

Monochromatic PSFs for two positions in the FOV and 8-bins spectral energy distribution of two stars, a M5 
star (top) and an O5 star (bottom)

M5

‣ It is difficult to disentangle the PSF size from the contribution of the SED in the observer stars 

‣ The CNN (or any other) will struggle to learn appropriate labels for the images

E. Centofanti (PhD)
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Degeneracy between the PSF and the stellar SED

Figure 2.3: (a) Middle rows: monochromatic PSFs for two positions in the FOV.
The PSFs are shown for eight equally spaced wavelength values. Top and bottom:
8-bins spectral energy distribution of two stars, a M5 star (top) and an O5 star
(bottom), located at positions 1 and 2 respectively. The wavelength axis is shared
between all rows. (b) Observation of the respective stars.

not addressed since these methods rely solely on the star image pixels for the
classification, and do not include any information on the underlying PSF model
corresponding to the observations. As a result, this degeneracy sets a cap on the
classification accuracy of these types of methods. To illustrate this issue, consider
the example shown in 2.3. The left hand side (a) of the figure presents two different
monochromatic PSFs (PSF1 and PSF2) at two different positions in the FOV. The
chromatic variation of the PSFs is shown for 8 different equally spaced wavelength
values. Suppose that in each FOV position we observe an unresolved star. At
FOV position 1 (top half of the figure) a M5-type (red) star is observed, whose
8-bin SED is shown in the top panel. At FOV position 2 (bottom half of the figure)
an O5-type (blue) star is found, with its corresponding 8-bin SED in the bottom
panel. According to a discrete version of 2.1, where the integral is approximated
by a summation, the star observations are the sum of the monochromatic PSFs
weighted by the corresponding SED values (see 2.2). The fact that PSF1 at
long wavelengths is similar in size to PSF2 at shorter wavelengths produces
observations of similarly shaped stars, even if they correspond to completely
different stellar types. The right hand side of the figure (b) shows the corresponding
observed stars. The observed star 2 has a similar, if not larger, size than star 1. In
principle we would associate a larger shape with a redder (M-type) star3, which is
the opposite of what is shown in this example.

3It is important to note that the observed stars are unresolved and therefore appear as
point sources. The apparent sizes discussed here are due to the PSF at different positions
in the FOV and at different wavelengths, not the physical sizes of the stars themselves.
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Monochromatic PSFs for two positions in the FOV and 8-bins spectral energy distribution of two stars, a M5 
star (top) and an O5 star (bottom)
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‣ It is difficult to disentangle the PSF size from the contribution of the SED in the observer stars 

‣ The CNN (or any other) will struggle to learn appropriate labels for the images
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Breaking the degeneracy

‣ Use the stars with measured spectra (and hence SEDs) to obtain an approximate PSF model 

‣ Use this approximate PSF model to measure similarity features 

‣ Train a support vector machine (SVM) classifier on the similarity features

SF ⟨Istar(ū, v̄ |ui, vi)H̃(ū, v̄; λk |ui, vi)⟩(λk |ui, vi) =
1 − ∥Istar(ū, v̄ |ui, vi) − H̃(ū, v̄; λk |ui, vi)∥2

ūv

nλ − ∑nλ
j=1 ∥Istar(ū, v̄ |ui, vi) − H̃(ū, v̄; λj |ui, vi)∥2̄uv

Approx PSFStar ImageSimilarity Features

Normalised similarity features as a function of monochromatic PSF wavelength

E. Centofanti (PhD)
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Fig. 7. Project workflow: 13 000 star observations are simulated with the WaveDi↵ PSF simulator. Each star observation is located at a particular
FOV position (ui, vi), has a random noise level S/N and belongs to a spectral class Ci. 10 000 stars are directly used for training the pixel-only
classification models, and 1 000 stars to test them. 2 000 stars are used to optimise the approximate PSF models required to calculate similarity
features. The quality of the PSF models is evaluated with the 1 000 test stars. Once the train and test similarity features have been computed, the
PSF-aware stellar classifier is trained with 10 000 stars and tested with 1 000 stars.

Table 2. Classification metrics for the PCA+MLP, CNN+MLP and
SVM+PSF models. SVM+PSFS1 stands for the SVM+PSF classifier
that uses the similarity features computed with an approximate PSF
model trained on the S1 dataset, which has a relative error of 2.4%.
Analogously for the S4 dataset with 500 stars and a relative error of
1%. The SVM+PSFGT row uses the ground truth PSF to compute the
similarity features.

Model F1 Accuracy Top-2 accuracy

PCA+MLP 0.366 0.370 0.757
CNN+MLP 0.385 0.391 0.746

SVM+PSFS1 0.392 0.410 0.755
SVM+PSFS4 0.506 0.512 0.873
SVM+PSFGT 0.546 0.549 0.910

(12)

In Kuntzer et al. (2016), this metric is referred to as the success
rate.

6.2. Pixel-only classification

We train, evaluate and compare the pixel-only classification
methods: PCA+MLP and CNN+MLP. Both methods were
trained with the same dataset of 10 000 simulated star observa-
tions. We evaluate both methods on the 1 000 test dataset using
the aforementioned classification metrics. The results are pre-
sented in Table 2. Each row of the table corresponds to a dif-
ferent model, and the first two rows correspond to the pixel-only
methods. The first column corresponds to the one-vs-all F1-score
averaged over all the classes, the second column is the accuracy
of each model, and the third one is the top-2 accuracy.

We note that the metrics for the PCA+MLP method are con-
sistent with those of Kuntzer et al. (2016). The performance of
the model is slightly lower, but this is expected as the data we
are using has a higher complexity in the spatial variation of the

PSF, higher noise levels, and the total number of samples used
for training is lower.

While using a convolutional network instead of the PCA de-
composition uses state-of-the-art deep learning techniques and
gives more flexibility to the extraction of spatial features, we do
not observe a significant improvement in classification. We be-
lieve this is primarily due to the degeneracy between PSF and
spectral type, which imposes a limit on the accuracy of pixel-
only classification, regardless of which technique is used.

In addition to the metrics shown in Table 2, which is an aver-
age over all star classes, we show the one-vs-all metrics for each
class in Fig. 8. The exact values are detailed in Appendix D. We
observe that the one-vs-all F1-score accuracy and top-2 accuracy
have a similar distribution for both the PCA+MLP model (in
red dot-dashed line) and the CNN+MLP model (in violet dashed
line). We note that these metrics are higher for the redder stars.
This is expected when examining the spectra shown in Fig. 6.
The figure demonstrates that the spectral di↵erences between ad-
jacent stellar types are larger for red stars (M-type) compared to
blue stars (O-type). This is also consistent with the distribution
of similarity features shown in Fig. 4, where we see that the red
stars (and neighbouring types) have a similarity feature distribu-
tion that is easily distinguishable by eye from the other types.

6.3. PSF-aware classification

Prior to training the PSF-aware stellar classifier, we compute
the approximate PSF models with the di↵erent di↵erently sized
datasets. We present below the estimated PSF models and then
the results of the PSF-aware stellar classifier.

6.3.1. Approximated PSF models

As mentioned in Sect. 4.1, we need to produce an approximate
model of the PSF to compute the similarity features of each
star, as the ground truth PSF is in principle unknown. We use
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‣ GT = Ground Truth (i.e. the PSF model used to simulate the star images) 

‣  are nested subsamples of the total 2000 stars available for training the approximate PSF model𝒮n
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Fig. 10. Accuracy (blue dashed line) and top-2 accuracy (blue continuous line) metrics for the PSF-aware model (SVM+PSF) as a function of the
PSF model error. In red and violet (horizontal lines), corresponding metrics for the pixel-only classification methods (PCA+MLP and CNN+MLP)
are plotted as a reference.

Figure 11 shows a diagram of the proposed PSF improve-
ment scenario. We assume a single Euclid-like wide-band expo-
sure. A fraction of the unresolved stars present in this exposure
have known SEDs from complementary measurements (in yel-
low) and the remaining do not (in blue). We propose to obtain an
approximate PSF model from the stars with known SEDs. Then,
to use this approximate PSF model with our PSF-aware classifier
to assign SEDs to the remaining stars. Finally, we can attempt to
improve the PSF model considering both the stars with measured
SEDs and the ones with assigned SED templates. We expect the
final PSF model to have a lower error as it uses more samples of
the underlying PSF and the spatial distribution of the additional
samples better captures the spatial variation of the PSF in the
FOV.

As a proof of concept, we test the proposed PSF improve-
ment scenario using a sample of 2 050 simulated star observa-
tions. We train WaveDi↵ using 50 stars with GT SEDs and ob-
tain an approximate PSF model with a relative error of 2.4% at
observation resolution. We then use the approximate PSF in our
PSF-aware classifier to assign SED templates to the remaining
2 000 stars. For this purpose we employ a SVM classifier pre-
trained on 8 000 similarity features samples. We obtain a classi-
fication accuracy of 41% and a top-2 accuracy of 76%, which is
consistent with the results presented in Sect. 6. Finally, the 2 000
newly classified stars are used together with the original 50 stars
to train new WaveDi↵ PSF models. We study how the PSF error
varies as we increase the total number of training stars. Fig-
ure 12 shows the relative error, at observation resolution, of the
PSF model as a function of the number of training stars. In dark
yellow, we present the baseline relative error of the approximate
PSF model (i.e. trained on the 50 stars with GT SEDs). The rela-
tive error of subsequent PSF models that use the additional sam-
ple of spectrally classified stars is plotted in blue. We show that,
as we increase the number of stars with classified SEDs, the rel-
ative error of the PSF decreases. Using the full sample of 2 000

50
stars

?
✔ 

✔ ✔ 

✔ 

✔ 
??

?

Approximate PSF

 

(50 stars + SEDs ✔ )

Spectral
Classifier

Similarity Features

50 stars

2000
Mono
PSFs

2000 stars

FOV: 

Improved PSF model

 
(50 stars +  ✔ )

(2000 stars +  ✔ )

2000
stars

✔ 

Unknown SEDs (?)
Known SEDs ✔ 

Fig. 11. PSF improvement scenario. The observed exposure contains
2 050 stars, of which 50 have complementary spectral information (in
yellow) and 2000 do not (in blue). An approximate PSF model is trained
from 50 stars with known SEDs. The approximate PSF is used in the
context of the PSF-aware classifier to spectrally classify the remaining
2 000 stars. The classified stars are assigned a SED template and can be
used to train an improved PSF model.

spectrally classified stars, we achieve a relative error of 0.78%.
This represents a PSF error reduction of almost 70%. Finally,
the dotted line (in green) represents the relative error obtained
by training the PSF model with 2 000 stars and the correspond-
ing GT SEDs (i.e. an idealised performance assuming unlimited
spectroscopic counterparts) for comparison. The minimum error
is 0.65%, only slightly lower than that obtained using the sample
of stars with classified SEDs.
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‣ The PSF-aware approach consistently outperforms pixel-only classification methods
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‣ Initial results indicate that this PSF-aware approach to SED classification could 
be used to improve data-driven PSF models 

‣ Future work → see if we can make this work with real survey data!

E. Centofanti: PSF-aware spectral classification

Fig. 12. Relative PSF error, at observation resolution, as a function of
the number of training stars. The baseline is set to the performance of
the approximate PSF trained with 50 stars and ground truth SEDs (dark
yellow). The subsequent PSF models (blue points) are trained using the
50 baseline stars in addition to increasing numbers of stars with SEDs
assigned by our PSF-aware classifier. The error bars represent the stan-
dard deviation of the relative errors of the test dataset. The green dashed
line shows the idealised minimum relative PSF error that can be ob-
tained when using 2 000 stars with ground truth SEDs, and the green
shaded area represents the standard deviation of the relative errors.

We emphasise that this is a highly idealised and simplified
test case and significant work would still need to be carried to
conclusively demonstrate the applicability of this approach to
real survey data. However, the initial results are promising and
indicate that it may be possible to improve PSF modelling per-
formance in single wide-band images by increasing the star sam-
ple with classified SED stars.

7. Conclusions

The SED of observed stars is crucial for chromatic PSF mod-
elling of wide-field single band telescopes. However, SED mea-
surements are often expensive and scarce for low brightness
stars, limiting the number of stars available for PSF modelling.
A reliable spectral classification method using survey data could
significantly benefit PSF modelling. By assigning SED tem-
plates to observed stars, it would increase the number of stars
available for constraining the PSF model. This approach could
enhance the accuracy of PSF modelling and, consequently, im-
prove various astronomical studies, particularly weak gravita-
tional lensing analysis.

In this paper we propose a novel method for spectral classi-
fication from single wide-band observations of stars. This new
method, referred to as the PSF-aware classifier, incorporates the
spectral variation of an approximate PSF model of the telescope
in order to break the degeneracy between the size of the PSF
and the spectral type of stars. To evaluate the performance of
our PSF-aware method, we compare it with pixel-only classifiers
that rely solely on the star image pixel values. We implement
and validate the results of the pixel-only classifier presented in
Kuntzer et al. (2016) and propose an update based on a convo-
lutional neural network. We find that the CNN method performs
about same as the Kuntzer et al. (2016) approach. We emphasise
that these classifiers, since they use only the pixel values of the
observed stars, do not address the degeneracy between the PSF
size and the spectral type of the star. Consequently, we introduce
the PSF-aware stellar classification method and address how the
PSF modelling error impacts the spectral classification accuracy.

We show how the PSF-aware model breaks the aforemen-
tioned degeneracy, pushing the classification accuracy further
and outperforming both pixel-only classification methods by

around 10%. We obtain a top-2 accuracy of 91% with the pro-
posed model and perfect knowledge of the PSF. We also study
how the level of fidelity of the PSF model impacts the classifi-
cation metrics, resulting in a top-2 accuracy of 87% with a PSF
model trained with 500 stars (1% relative error over the low res-
olution PSF samples), and a top-2 accuracy of 76% with a PSF
model trained with only 50 stars (2.4% relative error over the
low resolution PSF samples). This shows that the approximate
PSF models, which assist the classifier, although not su�ciently
precise for weak-lensing analyses, are helpful for breaking the
degeneracy and improving the classification accuracy. We use
WaveDi↵ (Liaudat et al. 2023a) to obtain approximate PSF mod-
els for the purposes of the work presented. However, we expect
similar performance from any PSF modelling method, provided
it can model the spectral variation of the PSF.

We then test the PSF-aware classifier in a proof-of-concept
study, where we evaluate how much the additional stars with
classified SEDs in a given FOV improve the modelling of the
final PSF. We show that PSF models trained with complemen-
tary classified stars allow the relative PSF error to be reduced by
almost 70%. The inclusion of spectrally classified stars reduces
the relative error of the PSF from 2.5%, for an approximate ref-
erence model trained with 50 stars and their GT SEDs, to an
error of 0.78% when using 2 000 complementary stars spectrally
classified with our PSF-aware classifier. While this experiment is
rather simplistic and does not fully represent the complexity of
PSF modelling from real data, the results obtained are promising
and illustrate a potential use of the proposed spectral classifier.

Future studies can explore improvements to the PSF-aware
classifier, such as replacing the SVM classifier with a neural net-
work or using convolutional networks to compute custom fea-
tures optimised for the stellar classification problem. The next
steps for the work presented would include making more realis-
tic simulations by adding redshift information to the star obser-
vations and increasing the number of wavelength bins used for
stellar observations generation ( Eq. 2). In this case, we would
need to study the selection of the number of similarity features,
which we set equal to the number of spectral bins, in more detail.
By addressing these issues, we would move significantly closer
to applying our PSF-aware classifier to real survey data. This
could be of interest for space missions such as Euclid, where the
spectral information (SEDs) of the observed stars is crucial for
training the PSF model.
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The Challenge

Simulated blended galaxies

Simulated isolated galaxies

Simulating blended sources
‣ Assume a UNIONS-like survey where galaxies are 

selected from r-band images 

‣ Need to have complete control of which sources are 
blended or not → we simulate galaxy postage stamps 
(  pixels) with and without blends 

‣ Need to define what constitutes a blend → we 
assumed any secondary object in the postage stamp 

‣ Need a benchmark for comparison → we used Source 
Extractor (Bertin & Arnouts 1996) 

‣ How do you prevent overfitting to the simulations?

51 × 51
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Deep Transfer Learning

224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512

14 x 14 x 512
1 x 1 x 4096

7 x 7 x 512 1 x 1 x 1

Convolution + ReLU

Max pooling

Fully connected + ReLU

Softmax

Figure 3.1: Visual representation of the VGG-16 network. Convolutional layers
with ReLU activation are shown in solid blue, max pooling layers are shown in
brick-pattern red, fully connected layers are shown as green bars, and the output
softmax layer is shown as the last box in pink.

galaxies. In the second step, the weights learned from simple parametric models
are applied to more realistic CFIS-like images to test the classification accuracy.

The architecture we choose to implement our deep transfer problem was that
of VGG-16. For simplicity we refer to our specific VGG-16 setup for the problem of
blend identification as BlendHunter.

3.3.1 . The VGG-16 network

VGG-16 is a deep convolutional network with 16 weight layers developed
by the Visual Geometry Group (VGG) at the University of Oxford (Simonyan &
Zisserman, 2015). The network was ranked first in the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) in 2014 (Russakovsky et al., 2015). The
main feature of this architecture was the increased depth of the network compared
to the state of the art at the time. In VGG-16, three-channel images (RGB) are
passed through five blocks of convolutional layers, where each block is composed
of increasing numbers of 3⇥ 3 filters. The stride (i.e. the amount by which the filter
is shifted) is fixed to 1, while the convolutional layer inputs are padded such that
the spatial resolution is preserved after convolution (i.e. the padding is 1 pixel for
3⇥ 3 filters). The blocks are separated by max-pooling (i.e. down-sampling) layers.
Max-pooling is performed over 2 ⇥ 2 windows with a stride of 2. The five blocks of
convolutional layers are followed by three fully connected layers. The final layer
is a soft-max layer that outputs class probabilities. The full network architecture
used is shown in Fig. 3.1.

The VGG-16 network was chosen for the work presented here for several
reasons. Firstly, the network can be implemented with weights pre-trained on
the ImageNet database (Deng et al., 2009) in order to save computation time
and resources. The diversity of this data set has allowed the network to learn a
variety of generic image features applicable to most image-classification tasks.
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Fig. 2. Examples of features extracted from the VGG-16 convolutional layers pre-trained with ImageNet weights. The leftmost panel shows an
input postage stamp containing blended sources. The following panels show example features extracted from various convolution blocks.

tive function gradient at time step t, and �1 and �2 the exponential
decay rates for the moment estimates.

mt = �1 · mt�1 + (1 � �1) · gt (2)

vt = �2 · vt�1 + (1 � �2) · g2
t (3)

It takes advantage of both RMSprop (Tieleman & Hinton 2012)
and AdaGrad (Duchi et al. 2011) methods. In addition to being
robust and less time-consuming, Adam can thus be applied to a
wider selection of optimisation problems. It also requires almost
no tuning of its parameters. We set �1 and �2 to their default val-
ues, respectively 0.9 and 0.999. Finally, the weights are updated
according to Eq. 4, where wt are the fully-connected network
weights at time step t, ⌘ is the step size, m̂t and v̂t are the bias
corrected estimators of the first and second moments, and ✏ a
value set to 10�8 to prevent division by 0.

wt = wt�1 � ⌘ ·
m̂tp
v̂t + ✏

(4)

At the end of each epoch, both training and validation losses
were computed, and the weights were updated every time the
validation loss decreased. Training was stopped when the vali-
dation loss had not decreased after 10 epochs. The network con-
verged after around 70 epochs on average.

We began training with a learning rate of 1.10�3. Since
choosing the right learning rate can be challenging, we decided
to reduce the learning rate by a factor of 0.5 every time the val-
idation loss did not decrease after 5 epochs. A small learning
rate would make it possible to avoid big jumps in gradient de-
scent. Otherwise, in this case, it could fail to converge and settle
around a local minimum. No weight decay was implemented in
this phase.

Tuning deep neural networks hyperparameters with a con-
siderable amount of parameters to learn can prove to be very
time-consuming. This is why we focused on the hyperparame-
ters that would have the most impact on the results. Several tests
were made such as changes to the regularisation, weight initial-
isation, dropout rate, learning rate and optimiser. However, no
significant improvement in accuracy was observed. Switching to
the SGD optimiser or increasing the dropout rate led to worse
performance overall.

The network takes approximately 630s to train on a sample
of 80 000 images using a standard Intel(R) Core(TM) i7-6900K
CPU (3.20GHz, 32GB).

4. Results

4.1. SExtractor benchmark

We compare the performance of BlendHunter with SExtrac-
tor, as this is the most widely used tool in the community for

Table 2. SEP parameter settings.

Parameter Value
THRESH_TYPE RELATIVE
DETECT_THRESH 1.5
DETECT_MINAREA 5
FILTER Y
FILTER_NAME kernel_3x3.conv (default)
DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.005

identifying and handling blended sources in astronomical im-
ages. The objective being to test the reliability of our approach
versus the state of the art. Specifically, We make use of the SEx-
tractor Python wrapper SEP (Barbary 2016) for our tests. Note
that SEP does many things beyond blend identification and many
of these steps can not easily be isolated, however we tried to
make the comparison as fair and consistent as possible.

SEP implements a multi-thresholding technique to decom-
pose detected sources into sub-sources (when possible). This
method takes two input parameters: the number of bins to de-
compose the light profile and the minimum contrast value be-
tween the main peak and a given sub-peak. The contrast is eval-
uated based on the flux of each peak (see Fig. 2 in Bertin &
Arnouts (1996)). The set of parameters we used for SEP is shown
in Table 2 (all the other parameters are kept to their default
values). The value of 0.005 for DEBLEND_MINCONT (the mini-
mum contrast parameter for deblending) may be considered a
little high compared to that commonly used in the literature, but
here we chose to favour reliable identification over increasing the
number of blends found at the cost of also increasing the number
of spurious detections.

Given our loose definition of blended sources (see Sect. 2.1),
we chose not to rely exclusively on the deblending flags pro-
vided by SEP. Instead, we also check that the sources are found
at the right positions (within a two pixel radius) to make sure
we do not extract noise features. Additionally, since some of the
sources in the postage stamp do not technically overlap, when
SEP correctly identifies the number of sources (i.e. 1 or 2) we
take this as a correctly labelled postage stamp.

The process for labelling postage stamps as either isolated or
blended sources using SEP can be summarised as follows:

If a single source is detected:

– If the source is flagged as a blend and is at the expected po-
sition, the image is labelled as a blend.

– Otherwise, the image is labelled as an isolated source.

If two sources are detected:
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Fully connected layers 
trained with simulated 
galaxy images 

Convolutional layers pre-trained 
with natural images

Example features 
extracted by the 
VGG-16 network

‣ Aim to avoid over-fitting by limiting which 
parts of the network can change 

‣ The use of natural images avoids fitting 
to simulation-specific parameters
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Fig. 3. Classification accuracy of BlendHunter (black solid line) versus SEP (blue dashed line) as a function of separation between sources.
Results are from the blended samples of the COSMOS parametric model testing sets. Each panel shows one realisation of a given noise standard
deviation, �noise. The blue shaded area shows the gain in accuracy of BlendHunter with respect to SEP.

SEP even when weights are used that have been trained with a
significantly di↵erent noise standard deviation.

BlendHunter notably outperforms SEP by 5 � 15% for
blends in which the galaxies are separated by less than ten pix-
els. This is a interesting result as these are precisely the cases
that generate biases in galaxy shape measurements (MacCrann
et al. 2020).

Overall the results are promising and indicate that it may
be possible to adapt this approach to more accurately identify
blended sources in real survey data. The next steps for moving
in this direction would entail generating more realistic testing
data that contain some artefacts and images with more than two
sources. Further work is also required to reduce the number of
false negatives, i.e. incorrect labels for isolated sources. Finally,

additional tests should be performed to determine if and to what
degree the use of pre-trained weights in the CNN layers can help
prevent over-fitting the network to the training sets. We leave the
investigation and implementation of these steps for future work.

Acknowledgements. The authors wish to acknowledge the COSMIC project
funded by the CEA DRF-Impulsion call in 2016, the CrossDisciplinary Program
on Numerical Simulation (SILICOSMIC project in 2018) of CEA, the French Al-
ternative Energies and Atomic Energy Commission. The Euclid Collaboration,
the European Space Agency and the support of the Centre National d’Etudes
Spatiales. This work was also supported by the ANR AstroDeep project - grant
19-CE23-0024-01. This work has made use of the CANDIDE Cluster at the In-
stitut d’Astrophysique de Paris and made possible by grants from the PNCG
and the DIM-ACAV. This work is based on data obtained as part of the Canada-
France Imaging Survey, a CFHT large program of the National Research Council
of Canada and the French Centre National de la Recherche Scientifique. Based
on observations obtained with MegaPrime/MegaCam, a joint project of CFHT

Article number, page 7 of 9

S. Farrens et al.: Deep Transfer Learning for Blended Source Identification in Galaxy Survey Data

Fig. 3. Classification accuracy of BlendHunter (black solid line) versus SEP (blue dashed line) as a function of separation between sources.
Results are from the blended samples of the COSMOS parametric model testing sets. Each panel shows one realisation of a given noise standard
deviation, �noise. The blue shaded area shows the gain in accuracy of BlendHunter with respect to SEP.

SEP even when weights are used that have been trained with a
significantly di↵erent noise standard deviation.

BlendHunter notably outperforms SEP by 5 � 15% for
blends in which the galaxies are separated by less than ten pix-
els. This is a interesting result as these are precisely the cases
that generate biases in galaxy shape measurements (MacCrann
et al. 2020).

Overall the results are promising and indicate that it may
be possible to adapt this approach to more accurately identify
blended sources in real survey data. The next steps for moving
in this direction would entail generating more realistic testing
data that contain some artefacts and images with more than two
sources. Further work is also required to reduce the number of
false negatives, i.e. incorrect labels for isolated sources. Finally,

additional tests should be performed to determine if and to what
degree the use of pre-trained weights in the CNN layers can help
prevent over-fitting the network to the training sets. We leave the
investigation and implementation of these steps for future work.

Acknowledgements. The authors wish to acknowledge the COSMIC project
funded by the CEA DRF-Impulsion call in 2016, the CrossDisciplinary Program
on Numerical Simulation (SILICOSMIC project in 2018) of CEA, the French Al-
ternative Energies and Atomic Energy Commission. The Euclid Collaboration,
the European Space Agency and the support of the Centre National d’Etudes
Spatiales. This work was also supported by the ANR AstroDeep project - grant
19-CE23-0024-01. This work has made use of the CANDIDE Cluster at the In-
stitut d’Astrophysique de Paris and made possible by grants from the PNCG
and the DIM-ACAV. This work is based on data obtained as part of the Canada-
France Imaging Survey, a CFHT large program of the National Research Council
of Canada and the French Centre National de la Recherche Scientifique. Based
on observations obtained with MegaPrime/MegaCam, a joint project of CFHT

Article number, page 7 of 9

A&A proofs: manuscript no. blendhunter

Fig. 4. Overall classification accuracy of BlendHunter (black solid
line) versus SEP (blue dashed line) with respect to �noise on the COS-
MOS parametric model testing set. The points are taken from the aver-
age accuracy from ten realisations of each noise level and the error bars
from the standard deviation.

Fig. 5. Relative classification accuracy for BlendHunterwith respect to
SEP on the realistic CFIS-like postage stamps, with �noise = 14.5. The
points are taken from the average relative classification accuracy from
the ten training noise realisations and the error bars from the standard
deviation. For close blends (red dot-dashed line), BlendHunter outper-
forms SEP for any level of noise in the training data.
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The deep transfer learning 
approach outperforms Source 
Extractor for close blends by 
~15%

Gain in accuracy with respect to 
Source Extractor

Small amount of noise added to simulated images Larger amount of noise added to simulated images

Results from simple 
parametric models

Results from 
UNIONS-CFIS-like 
galaxy images

Transfer weights
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4. Shear estimation

Generative modelling for shear estimation

Ezequiel Centofanti12

PSF

Observed tile 
‣ Shared shear

‣ Dataset: 𝒟

• Sample (𝒛, 𝜸)


• Generate galaxy 𝒢(𝔃)


• Apply shear and PSF


• Evaluate likelihood


• Accept / reject 𝒛, 𝜸
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‣ Generate galaxy 𝒢(𝔃) 

‣ Apply shear and PSF 
‣ Evaluate likelihood 
‣ Accept / reject 𝒛, 𝜸

Bypass shapes?

Do we even need to 
measure the shapes of 
galaxies if we can directly 
model the shear field?
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1. Cosmological motivation
‣ What are the problems we need to solve? 
‣ How does data play a role in this? 
‣ Why do we need AI and how can we trust the results?

3. AI for cosmological data analysis

‣ Estimating stellar SEDs from photometric data 
‣ Identify of blended galaxies in survey data 
‣ Going beyond

4. Future perspectives

‣ Where can AI take us? 
‣ Accessible tools 
‣ Conclusions

2. Weak gravitational lensing
‣ ‘Observing’ invisible matter 
‣ Technical challenges
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4. Future perspectives

‣ Where can AI take us? 
‣ Accessible tools 
‣ Conclusions
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AI Pros

‣ Many of the technical challenges presented are well 
suited for machine learning solutions as many of them 
correspond to complex classification, regression, 
segmentation, etc. problems. 

‣ The volume of data we will be dealing with in upcoming 
surveys demands efficient ways to extract the maximum 
amount of information. 

‣ Novel new methods are coming out daily for optimally 
compressing data and inferring cosmological 
parameters without needing an analytical likelihood (e.g. 
SBI, field-level, etc.)

AI Cons
‣ Lots of proof-of-concept work being done and more full 

practical applications are needed. Do these tools work 
with real survey data? 

‣ Need end-to-end pipeline implementations 
incorporating AI tools. Replace individual components of 
traditional pipelines or skip multiple steps? 

‣ New developments in uncertainty quantification need 
to be incorporated into the tools we actually use. We 
need to trust the results to answer the big questions. 

‣ Need to work on providing user-friendly community 
standard AI tools for WL analyses. If you build it they will 
come!
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‣ Despite our ignorance as to the composition of Dark Matter, we can map out the distribution of this invisible 
component of the Universe using weak gravitational lensing. 

‣ Despite the simplicity of the premise, there are many places where things can go wrong in a WL analysis 
introducing biases that limit our ability to answer the pressing questions in cosmology. 

‣ AI tools offer efficient ways to solve many challenges we face in the analysis. Example include: 

‣ Data-driven modelling of the PSF of the instrument 

‣ Identification of blended sources 

‣ Directly inferring the shear field  

‣ And more 

‣ Plenty of work is still needed to demonstrate that these tools can be trusted when we are working towards 
percent-level measurements of cosmological parameters. 

‣ With surveys like Euclid preparing their first public data releases (~Oct 2026), there is no better time to get ready!


