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SuperKEKB
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» SuperKEKB: Upgraded from KEKB.

* More than 30 times larger luminosity Bl X L ’
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* Luminosity achievement:
L . =4.65x10%*cm?s?,
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World record. ~Two times of KEKB
record with much smaller beam current.
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Belle Il

* Belle II: Newly-designed sub-detectors set to improve detection performance.
KLM

KL and muon detector

Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC

(end-caps , inner 2 barrel layers)

ECL

EM Calorimeter
Csl(Tl), waveform sampling electronics

TOP (barrel)
ARICH (forward end-cap)

Particle Identification
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (forward)

!j \
[ positrons (4 GeV)

Online systems:
L1 TRG and DAQ

Belle Il TDR, arXiv:1011.0352
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electrons (7 GeV)

PXD Vertex Detector
SVD 2 layers Si Pixels (DEPFET) +

4 layers Si double sided strip DSSD

CDC

Central Drift Chamber

Smaller cell size, long lever arm

* Physics target of Belle II:
* Rare B, 1, charm physics, Dark Matter search, CP Violation.

* Requirement for data taking:
* High L1 trigger rate (~30 kHz), high background, and large event size.
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Data taking in HEP

* First, let's paint a picture about what is going on during the experiment.
« Electronics (7 GeV) and Positron (4 GeV) are collided with high rate: luminosity
* 0O(10 kHz)
KL and muon detector
Resistive Plate Counter (barrel outer layers)

Scintillator + WLSF + MPPC
(end-caps , inner 2 barrel layers)

o

EM Calorimeter
Csl(TI), waveform sampling electronics

~ Particle Identification
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (forward)

electrons (7 GeV)

Vertex Detector : =
2 layers Si Pixels (DEPFET) + ; .

4 layers Si double sided strip DSSD .’y'
LI 3 .

>,
g
E .

“\k_\\

positrons (4 GeV)

Central Drift Chamber

Smaller cell size, long lever arm

Belle Il TDR, arXiv:1011.0352
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Data taking in HEP (cont'd)

« Collision will produce some kinds of rare particles, then they will decay immediately (O(ps)).
* B meson, D meson, T lepton, or even Dark Matter particles.

* Then decayed particles will fly out of the detectors with close to the speed of light.

2025/03/14

KL and muon detector

Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC
(end-caps , inner 2 barrel layers)

e

EM Calorimeter
Csl(TI), waveform sampling electronics

— sy  Particle Identification

electrons (7 GeV) Time-of-Propagation counter (barrel)

‘ /(( Prox. focusing Aerogel RICH (forward)

Vertex Detecgtor
2 layers Si Pixe|RREPFET) + 5 4

4 layers Si double siC®ugiip DSSD- : ‘ ’ ! 1 H;‘*uﬁ_‘_\

positrons (4 GeV)

Central Drift Chamber

Smaller cell size, long lever arm

My [

Belle Il TDR, arXiv:1011.0352
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Data taking in HEP (cont'd)

* There are many different types of detectors to capture different types of particles
* Crystal, PMT, plastic scintillator, sense wire, silicon, ......
« Signal is generated in O(10~100 ns) after the particles flies through.

KL and muon detector

Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC
(end-caps , inner 2 barrel layers)

e

EM Calorimeter
Csl(TI), waveform sampling electronics

......

= ’ Particle Identification
electrons (7 GeV) e : : "ﬁme-of-Propagation counter (barrel)

Prox. focusing Aerogel RICH (forward)
Vertex Detector
2 layers Si Pixel ~TCET) +

4 layers Si double (W &R o

)
W

7
il f: ;,_r:,-'
//

positrons (4 GeV)

Smaller cell size, long lever arm

Central Drift Chamber %

Belle Il TDR, arXiv:1011.0352
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Data taking in HEP (cont'd)

« For all the signals from the detectors, the number of channels is O(10000).

* We will readout and store them by using electronics system and computing servers.
« "Data acquisition" (DAQ).
» Fast data collection and processing in real-time and limited latency.

KL and muon detector
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aveis)

Readout and

EM Calorimeter | stqre everythln_g

Csl(TI), waveform sampihg electronics us'ng electronlcs
L\ and servers.

..i".i_ 8
. \-

positrons (4 GeV)

Belle Il TDR, arXiv:1011.0352
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Data flow in Belle Il DAQ

Front-End DAQ Readout
Detectors Electronics Electronics
7 analog  0(1000) 0(100)
Channels Optical |

.~ 0(10000)

| links

Optlcal
links

Level 1 Trigger
"Trigger signal” 0(100)

YIN
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Data flow in Belle Il DAQ (cont'd)

Mostly FPGA! Computing servers

High-Level
Front-Er]d DAQ Readout %i - Storage
Detectors Electronics Electronics gg
7 Ahnaeg O(1000) 0(100)

0(10000)

Optlcal ‘
Optical

]
R -
RiE -
w 1
L J s . ]
o

links
Level-1 Trlgger

"Trigger signal”
Y/N
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FPGA

DSP Block RAM Block

|

* FPGA: Field-Programmable-Gate-Array
« Configurable integrated circuit

* Array of programmable logic cells interconnected to
each other. Based on the user's design using
Hardware Description Language (HDL), 3=
the logic cells' array will be configured to - Eg
realize different digitized logics. E20E/ SEER

* Programmable: better flexibility.
* High speed, small latency.

« Application in industry: Aerospace, military,
telecommunication, video/image processing, data center, etc.

| |
BN«

=] sfetedaful ot efulslefoiafslslatif) efs)updetafy=fuluf -l cien
HEEN h

source: Intel

Adaptive Logic
Module (ALM)

g Programmable
Routing Switch

* Why FPGA in HEP?

» Fast processing on large amount
of data in real-time and limited latency.

* Flexibility on the processing design.

Versal series:
One of the latest product
from AMD Xilinx
for high-end application

Prime Gen 2.

source: AMD Xilinx
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Data flow in Belle Il DAQ

Front-End
Detectors Electronics
7 Analog 0(1000)

Channels
‘ 0(10000)

Electronics
0(100)

DAQ Readout

Optical
links

Level-1 Trigger
0(100)

"Trigger signal”
YIN

High-Level
Trigger

Storage

2025/03/14 Yun-Tsung Lai (KEK IPNS)



Detectors in Belle Il

* Central Drift Chamber (CDC):
* Wire chamber with ionization
gas
* Precise charged tracking.

* Silicon Vertex Detector (SVD): ¢ Pixel Detector (PXD):
* double-sided silicon-strip * Pixelated DEPFET sensors

* Precise charged tracking. * Precise charged tracking.

15857

.
-

R1082(Outer most sensewires)

These two are for precise tracking, but costly,
so usually at the inner-most region.

« Electromagnetic Calorimeter (ECL): * Aerogel Ring Image Cherenkov
Counter (ARICH):

* Array of CsI(Tl) crystal with PMT _ o
- For electronics and photon. * For hadron identification.

nc
T TR

he
e
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Front-End Electornics

* Front-End Electronics (FEE):

* Readout the analog signals from detectors,
and record the digitized signal.

 AFEE receives a part of channels of an entire detector.
* Near collision: Rad-hardness is critical.

* For different types of the detector sensors:
* Sense wire, crystal+PMT, semiconductor, etc
* Their analog responses are also different.
* The design of FEE is hence dedicated.

« CDC:
* ADC: custom designed ASIC.
 Amp, ADC, shaping, TDC, .. E
* Xilinx Virtex-5 FPGA
for digital signal processing.
e Zero suppression.

e Output to downstream:
SFP and QSFP modules
with FPGA MGT.

Single channel 2.5x2.5 mm?

NIM A 735 (2014) 103-
Xilinx Virtex-5 ASIC: CMOS 65nm
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Data flow in Belle Il DAQ

Front-End
h DAQ Readout . torage
Detectors Electronics Elgctronics Igger g
7 n 0O(1000
Jumes,, OLL000) O(100) =
_ 0(10000) ‘ )
% e > o
° °
.}
= > —
O(/{(O(/ ~—

Level-1 Trigger
"Trigger signal” 0(100)

YIN
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DAQ readout board

* Readout: receives data from O(10)~0O(100) of FEE via optical links, performs event
building, and transfer data from readout board (FPGA) to server (PC).

* Possible options for FPGA - PC:

PCI-
EXpress

GbE

ATCA

- source: Intel
source: Wiki

VME

source: Wiki

source: Wiki

2025/03/14 Yun-Tsung Lai (KEK IPNS)



DAQ readout board in Belle Il

* PCI-Express is the popular nowadays.
* The PCle40 board was newly installed in Belle Il in 2023.
e ALICE and LHCDb at the LHC have been using it.

* The upgrade project was carried out with collaborating KEK (Japan) and 1JCLab-Orsay
(France).

3.75Ghis Copper PCle40

17.5 Gbls __
Nlink .

. 2x8 PCle Gen3
Upgrade ° IntelArria 10.

 Developed in LHCb and ALICE. 16 GBI/s
* 48 optical links.
* 2x8 PCle Gens.

* |n total 21 PCle40 boards are used
in Belle II.

* 4 Xilinx Virtex-5 receiver boards.
* PrPMC: data procession, pre event building.
* In total 203 coppers were used in Belle II.

e 203 x 6 daughter boards.
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Data flow in Belle Il DAQ

High-Level
Front-End DAQ Readout 'Iqri er Storage
Detectors Electronics Electronics e1¢
7 nalog O(1000
CAhanIngls ( ) 0(100) *[é%%[—} -

~ Gtigooo Optical o =
» > : > :
° °
= P
aii >

Level-1 Trigger
0(100)

"Trigggr signal”
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L1 trigger

* Provide L1 trigger signal to DAQ using FPGA chips for real-time processing on
detector raw data within limited latency (=5 ps).

- Why L1?

« Buffer storage are not enough for all data due to high event rate and short bunch
spacing in collider experiment.

* But hardware-based trigger system design is complicated and costly.

* Some of the experiments are based on trigger-less streaming DAQ: LHCDb, ILC,
nuclear experiments, etc.

J-PARC, ILC
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Belle Il L1 trigger

* 4 sub-trigger systems + 2 global trigger systems.

* Every block is FPGA boards with specific algorithm.
* Comprehensive trigger menu to select various kinds of physics events.
« Everything in this chain has to be finished in ~5 ps.

KEK, NTU, FJU,
NUU, KIT, TUM, MPI,
KU, KMI Nagoya, U.
of Tokyo

Hanyang U., BINP,
Notice co.

U. Pittsburgh,
Hawaii U.

Virginia Tech.,
Hawaii U.

2025/03/14

- >
20 track info
-
NN_trac:k EI
E}—> Merger ; info )
30 track | 42 -
Stereo TS info GREL a
> §, triggi_er g
é mru:lltﬁn <
i ECL cluster inf
ECL [»| 4x4 Trigger Cell —»| Merger | Cluster Finding SR —p| O §
= c
| Energy, timing, Bhabha |=timas cononon g |G
| : :
TOP hit > 4 a
TOP — | Hit — | Pattern matching, timing E > 3
TOP trigger condition o o
KLM hit [C U
KLM —®| Hit —— Coincidence, back-to-back et -
KLM trigger condition
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Belle Il CDC trigger

» A sub-trigger system in Belle Il with one of the detector.
« Everything in this chain has to be finished in ~5 ps.

-

Axial SL: 0, 2,4, 6,8
Stereo SL:1, 3,5, 7

Track Segment

SL1-8

Y &

CDC

Axial

Track
Segment
Finder x5

o

Event
Timing L
Finder x1
3D
|| Tracker
Pl xa |
2D il [ ——
Tracker NN
| x4 Tracker
Each for a quarter _H x4 |

of CDC
transverse plane

Each for a quarter

of CDC

fransverse plEl.ﬂE.‘

TS hit of SL0-4

Each block:

Front-End Mi;%&f Each for an axial SL
X292
SL FE M
i R Stereo
1: 20 5 Track
2 24 & Segment
3. 28 7 Finder x4
4: 32 8
50 36 9 Each for a stereo SL
6: 40 10
7 4 1n ] ]
s as 12 Each line with arrow:

2025/03/14

Optical link
(max. 25 Gbl/s/link)

A FPGA board with
complicated algorithm
logic design.
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FPGA In L1 trigger

* For TRG purpose, complicated algorithm is implemented to process detector raw data in
real-time. Utilization of machine-learning in the logic design became a trend recently.

e Strong FPGA with large resource: improve the logic itself, resolution of triggering, reduce the
background rate, and perform everything within a latency limit,

Belle 1l UT4

Belle Il T3 a0 ATLAS Muon Trigger processor

ooooo

/
/)
s

TR

Xilinx Virtex-6 Xilinx UltraScale Xilinx UltraScale+

11.2 Gbps with 64B/66B 25 Gbps with 64B/66B GTH,GTY:16.8 Gbps
with 64B/66B
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L1 track trigger algorithms

4 TraCking in L1 trigger Inner TSF Outer TSF

(a) CDC Hits
Track Segment:
Simplification on the algorithm

2D Track Finding:
Hough transformation.

L " Stereo
Limited track condition. f e
¥ Y} |
xy) |_
§ o aped | == ) 3D Track Finding:
J—— / ‘ i Fitting with Stereo wire info
| B ey :
o _ Lo ) \l}, i == y e
= X 3 S " z —
T g o _f_
‘? ¢ e=tand g i s
(a) real plane (b) conformal plane \g . L T ]
0 Ly 1 T YT I T YT Y .‘; |
| e 1
B¢ is greatly exaggerated
2
NN 3D Track Finding:
— 1 (c) 2D Track Finder R R (d) 3D Track Finde 5
= r \ o () D " |
] 3 3
) 0 R Sl
. [ —e Q (9x .
= A ‘@
—2 . - 2
The drift time has a positive
sign, when the track passed
Delta ¢ relative t.o the . on thg righ_t sir_je_, and a
260 280 300 320 iDJrack. For Axial TS this Fheeglaeta/e sign if it passed on

#l
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2D tracker: Hough transformation

T.-A. Sheng. Master thesis
https://doi.org/10.6342/NTU201802022
Ping Ni. Master thesis

* Full track: The charged tracks which go through

all of the layers of CDC. Full track OFff-IP full track Sholit
fromIP  Beam background 'rac
. . XA 8 1TT ECL 1 PN \",1;\.
e 2D algorithm: Hough transformation. T f 7
- - 47, ¥
« Assuming a circle. ~eoc o
* TS from 5 Axial SL are transferred into 5 lines in the VD PXD(2la EEE r%
conformal plane. — af v;m _ _|_:
* Find the peak, which corresponds to track parameters. 1P i |
SR fe—at - =T
N a+b’=r’ imAmY
N H \ B B o
/ i =3 Ty
A\ / y Zxcos¢+ lysmeg
% j’“ : " . I; 0212 ;,J T84 lll
] b0
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https://doi.org/10.6342/NTU201802022

tau event trigger: NN

9

* In L1 trigger, not only the particle information from detector (charged track), but also the
"physics event type" can be determined by ML in FPGA.

* Avery advanced logic in L1 trigger.

e ML tau trigger:

* Input the position and energy information of clusters to a Neural Network, and determine if it

IS a tau event or not.
« AKkind of topological application.

* Based on hls4ml.

* Validated and will be implemented in 2024 runs.

104_

103_

102

00 02 04
output of

background
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background
tau

0.6

. 0.8
Sigmoid

tau

hie: ECL
energy sum

ecltaub2b:
ECL cluster
based logic

1.0

1.00

.95

Signal Efficiency ({PR)
o
(=]
w

0.70

0.00
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== neural network AUC=0.952
neural network(threshold=0.4)
hie

hiel

hie2

hie3
ecltaub2b
ecltaub2b2

010 015 020
Background Efficiency (FPR)

0.05

0.25

0.30




Toward the future: Versal ACAP

CPU FPGA Al
 Our group is targeting on using the Xilinx Versal ACAP for — e
future electronics device's R&D. Now we plan to use Versal R
for L1 Trigger, DAQ or HLT purpose. \E ‘ \m'
VERSAL" -

"\ DUAL-CORE ADAPTABLE
fcenias NAROWATE
~ PROCESSOR

* The features of different Versal series ACAP:

PLATFORM

* Al engine, DPU: stronger computing engine for ML. oo e,
* High Bandwidth Memory (HBM). wiges | oizs LL
* Larger number of cells + High transmission bandwidth. L ==
* PAM4, PCle Genb.
NRZ

(Non-Return-to-Zero)
L [k
— Y

<

519A3| 7

oM
— — e : =S
Limit: ~25 Gbps it =
y

i
PAM4 e -
(Pulse Amplitude Modulation)
——— m— <+
=== Memory Interface

Flexible Interconnect | === Streaminterface
===fp Cascade Interface

Lo

SELEIR

VCK190

Four distinct voltage levels.
Two bits per clock cycle. source: AMD Xilinx
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New ideas for L1 trigger

S. Skambraks. Thesis

2D - 3D Hough tracking:
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ECL clustering with GNN:

[TE]

- 1010

stack 2D- to 3D-parameter-space

Event Display (Full, Early Phase 3) - Example

Karlsruher Institut fur Technologie
Displaced tracking with CNN:
ElFFFEFFEREEIIE]

Sense 160 160 192
wires

132

X32
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. EEEEEE ey
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E BN B % 5
® Aglining methode ploted on the CDC cross-section ® Proposed aglining methode with a agning width of 5 within
each segment

Tracking with GNN:

Barrel
Photon 1 12 total CPs 225 x Prediction 1
Photon 3 k /
1.0fPhoton 4 x Prediction-3
Photon 5 x Prediction’4
Photon 6 x Prediction.5
9-5Photon 8 2.001 " “x Prediction 6
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= ©
1000
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1.00 6
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Dataset: displaced_processed_simulated_2_tracks_0_nominal-phase3
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New ideas for L1 trigger

Karlsruher Institut fiir Technologie dp-Lg 2 N
S. Skambraks. Thesis Displaced tracking with CNN:

2D -. 3D Hough tracking: ' st Jo [1 ]2 [ [+ [s[s [7 o]
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Algorithm development: HDL, HLS, ML, Al engine

* Other than writing HDL, we have more options to construct our algorithms: HLS, ML/AI, etc.

* We have been trying to go through each path in this map, and to build up a database of
technical knowledge.

* To support our experimental colleagues by proper documentations and hand-on lectures.
* We are mostly ready.

| Verilog/VHDL |

HLS
software
|C++ software I—b Vivade™ WL
: IPcore
| # R - FPGA firmware (PL)
ML VI\ ,-t_ )f:' - gh

| | QKeras
| |TensorFlow
| "} PyTorch

Keras d(p)c ¥ ML inference

@&a. XGBoost [ IS

g Imeorfow € ONNX /> Conifer his(4jml

wscnns wllFININ

—

Manual
implementation

Vitis
Hand-writtern [~ ¥ XILINX

ML in C++ a VIS Rﬂﬂﬂh

design flow does gy

Vitis Al include Vivado for _m'q
w  XILINX firmware making in PL. - e e
- a VITIS DPU + Al engine
= (no PL)
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Versal Al engine

Versal ACAP Versal Al engine

R

CPU FPGA Al

SCALAR

ADAPTABLE -
Sl ENGINES ENTINES Al a
f <
DUAL-CORE
ARM CORTEX "AT2 N Engine Engine
‘ APPLICATION
PROCESSOR | ENGINES ! !
VERSAL" - -
| DUAL-CORE ADAPTABLE
AT MARDWARE - Al
© PROCESSOR — Engine
QSIS
A
PLATFORM *
MANAGEMENT >
GONTROLLER y
i ¢

1006 NIDEQ WDS
Mu\.ﬂmn& DECODER

® 33 NI
PCIE 426Ghls ETHERNE GPI0
GENA/ g :A: 5; DDRA CORES | =
’ WITH D
ceciX

=== Memory Interface
w=p Stream Interface
===l Cascade Interface

Flexible fhterconnect

« Computation acceleration engine of Versal ACAP. Al engine "tile" [

* Embedded processor of FPGA. o i e | L Cocan s
* High bandwith between FPGA and Al engine. ’”“m ] S

* C programmable. T
* High precision.

<o D | S To/From East Tile
« No quantization loss on ML. e ] _ [—

Interconnect

To/From West Tile

P Cascade In
=
* Low lat
ow jatency. i
To/From South Tile To/From South Tile
Interconnect Local Memory
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Versal Al engine: ML inplementation

We have been studying on the utilization of Al engine for the future application purpose.

A NN model is built by Keras. 3 inputs - 3 hidden layers (8,8,16) - 1 output with sigmoid.

Coding in C++ in Xilinx Vitis software.
« Everything for Al engine is in C++ and single-precision floating point.
* No quantization loss.

Latency: ~3 ps.

Exact math form W XILINX
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* In the field of experimental particle physics, we utilize FPGA device to process high-rate
data from detector in real-time in many different aspects. Our research group is working
the R&D of various kinds of FPGA devices.

* Front-End Electronics: Interface to analog signals with using manual ASIC.
 DAQ: Data collection and transfer to PC via GbE, PCle, etc.

* Trigger: Real-time physics algorithms in FPGA within limited latency based on different
methods: HLS, ML, etc.

* Regarding the prospect for upgarde, we also have a project based on fundamental
investigation on the Xilinx Versal device.
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Considerations for FEE design/upgrade

* Newer FPGA chip: More resource for data processing and larger data output bandwidth.
* Usually, the FEE boards are close to collision: radiation damage as "Single-Event-Upset".
* Radiation hardness is important for all the chips: FPGA, ASIC, optical modules, etc.

* Hence, FPGA in FEE is usually not very strong one.
* We can also choose to pull down all the channels, but number of cables will be huge.

@: tdc is recorded

T. Koga et al.

« ASIC: Improve the performance,
(KEK IPNS)

precision and reduce the
“cross-talk noise".

L ) Ll
o 15 20

mpling point (32MHz)

» Largely affects tracking performance
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Qin[o] { apc secri:";‘ —— VoS> Aoc ooro [
1 =F
b Timing f——LVD! Frame CL
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= |
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SPI Timing PLL  |—LVDS>| DatacLk [
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SPI Reference
Interface CLK
Xilinx Virtex-5 Xilinx Kintex-7 Designed by M. Miyahara (KEK IPNS)
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Different design of system: FEE + Merger

* Belle Il ARICH detector:

* Cherenkov ring image
produced by the aerogel.

* FEE + Merger design
« 1ASIC: 36 ch

= ~1~
e 1 FEE: 4 ASIC emission angle 9
* 1 Merger: 5~6 FEE
e Overall: 72 Mergers, 420 FEEs 4 ASICIFEE
5~6 boards Downstream
input DOU » _ u '
M’ hitinfo. FSRTTTeqster trigger . /
Preamp Shaper Comparator ;36ch » IIIﬂIIE ‘ 2 )
‘_|A5|C FPGA ! © to back-end - -;
ASIC (36¢ch) design in FEE FEB ) Merger

Xilinx Spartan-6 Xilinx Virtex-5

* Merger is served as a master to:
* Configure/control/monitor the FEE.
* Merge FEE data with zero suppression: effectively reduce the data size and number of links.
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Different design of system: FEE + Merger (cont'd)

replica #
_— o
* Radiation damage on FPGA:
» Single-Event-Upset (SEU): Transistor signal is Virtexcs _«-i;ﬁm
inverted while high-energy particle hits. XCSVLXSOT  JTAG |
. . ; 6x4 . Spartan-6
- One of the essential issue for electronics R&D of HEP,  [ERTREN. — Xcesixas
4 m B
° Configuration
For Belle Il ARICH, we expect to see 0.2/hr Sl s
uncorrectable SEU error in peak luminosity. Corrector C?
(Majority Voti 4,
raprericens.
replica #5
R. Giordano et al., Instruments 2019, 3(4), 56
] ) . ) Layout view Configuration view Configuration view
» A special SEU correction design in ARICH: ey
* Merger can readout the configuration frame Unused Unused

of each FEE, and do majority voting on all.

« Voting can find the redundant frame bit on
which FEE.

* Repair it in real-time by partial reconfiguration.
* Does not require any manual operation.
» Better performance than the Xilinx IPcore.

2025/03/14 Yun-Tsung Lai (KEK IPNS)
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Conditions and requirements for TRG

* Requirements:
* Overall latency < 4.4 ps.

e ~100% eff. for hadronic events.
* Max 30 kHz @ 8*10%* cms

e Timing precision: < 10 ns
* Event separation: 500 ns

* Physics processes in interest:

L1 trigger
condition for
Belle ll:

Depend on you

physics target!

2025/03/14

Examples of technical challenges so far:

* Low-multiplicity trigger mainly based on ECL, but
contamination from noise, beam bkg or Bhabha.

* Energy trigger with high eff. but high rate too.
 Injection bkg.

« Drawback of track trigger at endcap.

* High track trigger rate due to crosstalk noise.

* Latency budget due to transmission or complicated
logics.

Phase2 Lum. Record

=
Process C.S. (nb) |R@L=5.5x10% (Hz) R@L=8x10% (Hz)|  TRG logic
Upsilon(4S) 1.2 6.6 960 CDC 3trk(fff)
ECL high energy(hie)
Continuum 2.8 15.4 2200 ECL 4 clusters(c4)
HH 0.8 4.4 640 CDC 2trk(ffo)
o 0.8 4.4 640 o
Bhabha a4 242 350 ECL Bhabha(bhabha,
3D bhabha)
Y-y 2.4 13.2 19~
Two photon 13 71.5 10000  |SDC2O)
Total 67 357.5 ~15000
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KOREA

UNIVERSITY

3D tracker

Full track  Off-IP full track Rl
from IP Beam background Hae
HTTTECL 1580 I

« Purpose: find the longitudinal displacement of a track (z) to
separate the off-IP track, e.g. beam background.

* Based on the 2D track, and perform fitting on the 4 stereo -
SLTS. 4
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Gold: Sense wire 3 =k ",
~ Dash line: The wire if - valer resu
ztostraw stereo wire was an a: 1 T '
: ‘ s e dist] choose hit if |dist] < 20 cm
1y X
\2 -] g
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1
O is greatly exaggerated VDtlng + ﬂﬂEl’
fitter voter
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3D tracker with NN

Karlsruher Institut fir Technologie dp-BgZzz

S. Neuhaus et al 2015 J. Phys.: Conf. Ser. 608 012052

Kai Lukas Unger et al 2023 J. Phys.: Conf. Ser. 2438 012056
F. Meggendorfer, DPG Conference 2021

Thesis: S. Skambraks, S. Pohl

* In addition to the conventional 3D tracker based on fitting method, Belle Il has a Neural
Network 3D tracker (NN) running in parallel in the system.

* Input the 2D tracker and stereo TS info
* Crossing angle, drift time, @ relative to 2D Track .
« Obtain z, and 6.

* NN is implemented in FPGA mainly with LUT.

<<UT3>>
I«INFUT FROM ETF>>

Event Time

GTX

J Capture \
GTH J ZCZJ:::: <cOUTPUTTO GOL>> |
IT.UT N |
G e
The drift time has a positive | . L]
sign, when the track passed
Delta ¢ relative to the on the right side, and a
2DTrack. For Axial TS this negative sign if it passed on
is 0. the left.
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Short tracker

Full track  Off-IP full track Sh°lr(t
from P Beam background rac

* The logic is implemented in part of the global trigger (GRL).

 Use the TS of inner 5 SL (3 axial, 2 stereo). TR i
* Pattern recolonization over a 64 x 5 array. Simple design. r::m a ‘-,;Eg%%

* Consider the resource of FPGA device. | / b ol L_.\f
* The logic is implemented as a LUT. }f/ " lacs 4 |

* Improve the angular acceptance of CDCTRG toward endcap.
* Also the curling-back tracks within the chamber: low-pt.
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PAM4 study of Versal

* We have successfully tested the real transmission with PAM4 and QSFPDD:
* QSFPDD-SR8 with MPO16, from FS company.
e 53.125 Gb/s x 16 lanes.

* Only this line rate is supported.

3-day BERT, Our self-designed protocol, PRBS16: .
* BER of the worst lane: 9.0 x 104

16-lane combined BER: 6.7 x 101°

* Based on our experience, NRZ is usually O(10-1%)
* Latency: 210~240 ns * This BER for PAM4 looksl acceptable.

% IBERT GTM Real-Time Scan Plots
C

BERT_0.Quad_205.CH_1 v
Histogram

Amplitude (%)
Amplitude (%)

0
0 1400 2800 4200 5600 7000 0 68000 136000 204000 272000 8l2 1015 1218 1421
ES Sample

PRBS16 patterns

1624

Waveform - hw_ila_4

Q 4| =|¢|p (% BB Qlq|i ¥ -
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PCle study of Versal

« State machine of the readout protocol between PC and FPGA.

* Basically, handshake between PC and FPGA to know when is
ready, what is data size, and when to take data.

 Random data size in the data generator.
* Not fully optimized yet: Long waiting time.
* 1 ms waiting time in idle state to repeat.

State machine design
with ST mode

Card: Determine data witf
random size.
Interval: 1ms.

Card: Write 1 to reg28 to
tell PC to start reading.
Write data size to reg4.

State machine design J
with MM mode * Done

PC: write 2 to the base
addr to tell the card to start
generating evt data.

Card: keep checking the
base addr.
Interval: 1ms.

BC: get evt size regd. If1
Write 2 to reg8: Data
will be transmitted from
sq[d to ring buffer.

Card: Determine evt size:
Write evt data from base
addr + 1.

Card: Write 1 to the base
addr to tell PC to start
reading.

PC: Read data from
ring buffer, and store it.

PC: keep checking reg28.
Interval: Ims.

Ifnot2

lfnotl
Done

PC: get evt size from the
base addr, readout the evt
data, and store it.

PC: keep checking the
base addr.
Interval: 1ms.

Store event data with
random size

If notl‘

512

192
root@cef@l:/home/ytlai/versal/dma ip drivers-master 202311/QDMA/linux-kernel/apps/user-readout# ./user-readout -d /dev/qdma®2000-MM 512
-2 -c 10

host buffer 0x1008, 0x5558abl41000.
evt filled

1 192 0 64

evt size:384 bytes

R EERE R RS R R R RS, R RS,

2025/03/14 Yun-Tsung Lai (KEK IPNS)
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