Cesium clock drift correction for HK timing system

Claire Dalmazzone, 30th April 2025

Contents

Time correction with Cs clock

Timing correction with Cs clock

Cs clock

Changed the setup to perform the timing correction with Cs clock

- Keysight 2 measures UTC(OP) Cs PPS
- septentrio measurement).
- Septentrio measurements.

• Cs PPS and 10MHz are sent to 5th floor and input on the receiver. The Cs PPS was not aligned with the UTC(OP) so the Septentrio measures Cs -UTC(OP) modulo 1ms (500ms difference between the Keysight and the

Correction of the Keysight measurement is switched on using the last 100

First tests with the Cs

Free-running: 150 ns drift in 18 days (frequency calibrated at the 10^{-13} precision level)

Corrected: residuals = (-2.2 ± 2.6) ns

First tests with the Cs

Correction with 100 points allowed to

- Keeps the Cs clock stability intact at least up to 10^4 seconds averaging time
- Partially corrects the slow drift of the Cs clock.

Can maybe do better with a smaller correction time window (30-50 points).

6

First tests with the Cs

Correction with 100 points allowed to

- Slightly higher tides at $\tau \leq 10$ s
- Partially corrects the slow drift of the Cs clock.

Can maybe do better with a smaller correction time window (30-50 points).

Conclusion

- The setup has been running smoothly for ~20 days now
- Correction method seems to work also with Cs clock. With 100 points, the short term stability is preserved and the drift is limited in a ± 10 ns range.
- Plan for the future:
 - Keep the current run going for 10 more days? (Not sure if it is necessary) Test other correction time windows (30 points)

 - PPS alignment of the Cs clock with UTC(OP)

