Simone Valdré

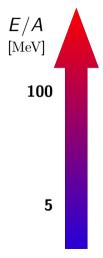
INFN - Sezione di Firenze

LNS – Catania, February 25th 2025 DeSyT-2025

International workshop on detection systems and techniques for fundamental and applied physics

Simone Valdré

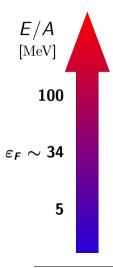
INFN - Sezione di Firenze



Online, March 12th 2025

FAZIA Days

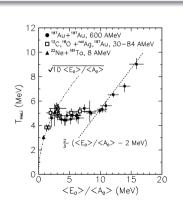
Heavy-ion collisions



Finite nuclear matter

Ideal homogeneous system made of protons and neutrons

- Ultrarelativistic regime
 - Vaporization
 - Gaseous State


- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - Liquid State

Finite nuclear matter

Ideal homogeneous system made of protons and neutrons

- Ultrarelativistic regime
 - Vaporization
 - Gaseous State
- Fermi energy region
 - Multifragmentation
 - Phase transition
- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - Liquid State

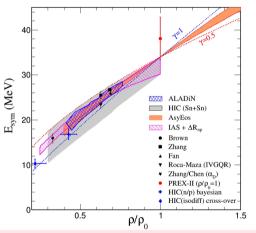
J. Pochodzalla et al., arXiv:nucl-ex/9607004

Equation of state

Asymmetric nuclear matter Equation of State (EoS)

• Symmetry energy term depending on proton and neutron densities:

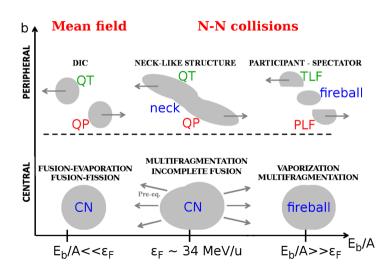
$$\frac{E}{A}(\rho, I) = \frac{E}{A}(\rho) + \frac{E_{\text{sym}}}{A}(\rho)I^{2}$$

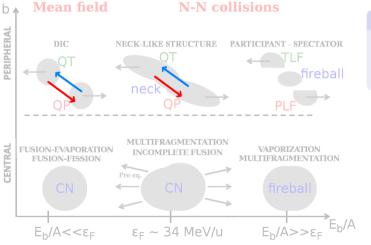

Isospin parameter

$$I = \frac{(\rho_n - \rho_p)}{\rho} \approx \frac{N - Z}{A}$$

 $E_{
m sym}$ behaviour is well known near ho_0 only

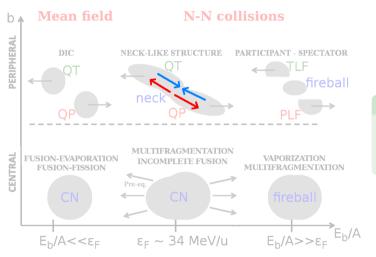
Equation of state


Physics case 0.0


 E_{sym} behaviour is well known near ρ_0 only

Physics case

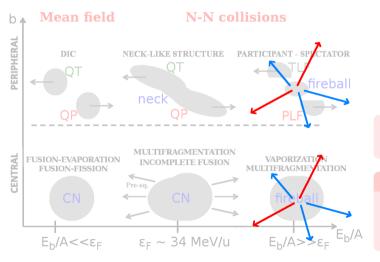
Reaction mechanisms and EoS related observables


Reaction mechanisms and EoS related observables

Isospin diffusion

Isospin equilibration between QP and QT $(\rho \approx \rho_0)$

Reaction mechanisms and EoS related observables



Isospin drift

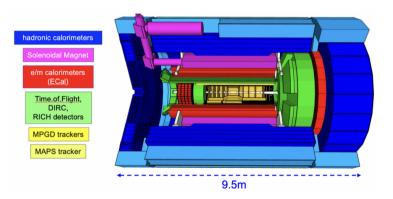
Neutron migration to low density regions (neck) $(
ho \lesssim
ho_0)$

Physics case 000

Reaction mechanisms and EoS related observables

$$\rho \gtrsim \rho_0$$

Neutron - proton (double) yield ratios

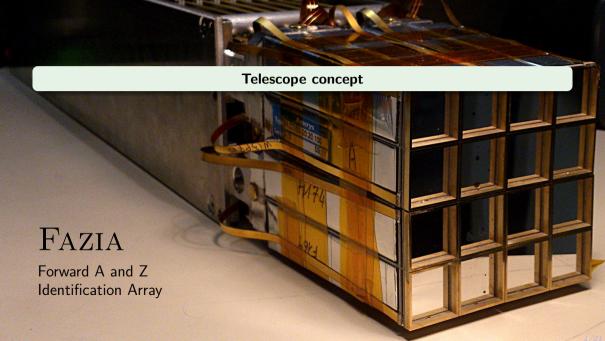

Elliptic flows

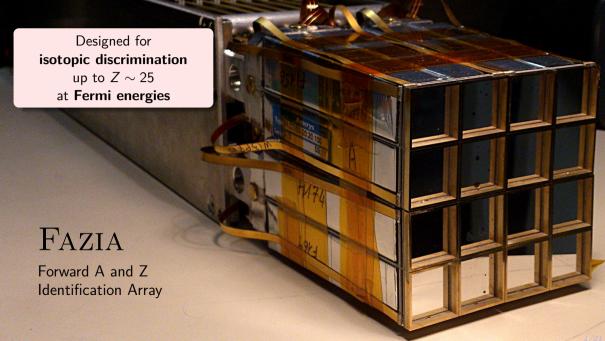
Fourier expansion terms of azimuthal angular distributions

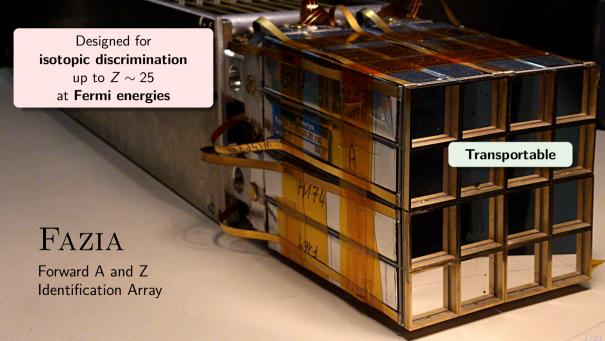
Physics caseCurrent detectorsHIC @ FRIBAZIMUTH000 \bullet 000000000000000000

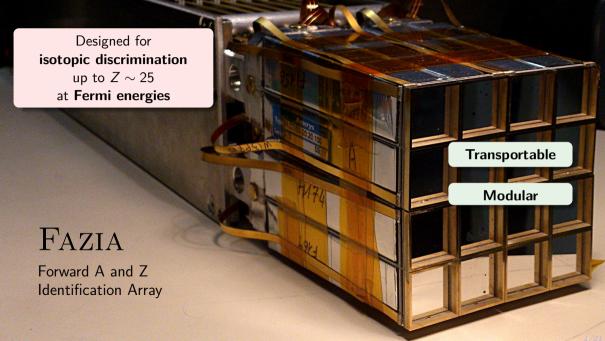
High energy detectors

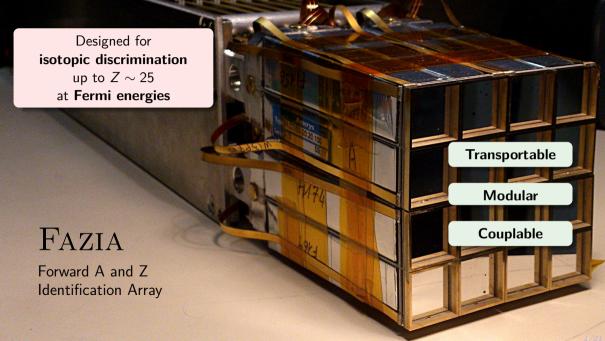
Tracker + calorimeter concept

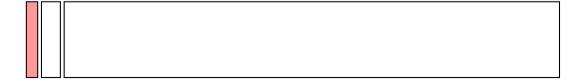



Trackers


Capable to measure very small charge release


Calorimeters


Large dimensions in order to stop particles and ions



The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

The telescope stages

- 300 µm reverse-mounted Si detector:
- 500 μm reverse-mounted Si detector;
- 10 cm CsI(TI) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

$FA\overline{ZIA}\ future$

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

FAZIA future

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

Future at GANIL

There are still many physics cases to be explored

2 experiments scheduled in 2025!

1 experiment approved for 2026!

FAZIA future

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for **Fermi energies** (15–50 AMeV)

Future at GANIL

There are still many physics cases to be explored

2 experiments scheduled in 2025!

1 experiment approved for 2026!

FAZIA technology will be fundamental for the future developments

Future of HIC

IN2P3 and INFN are going into the same direction

IRL-NPA

NUSDAF

Future of HIC

IN2P3 and INFN are going into the same direction

IRL-NPA

NUSDAF

Near future of HIC is at FRIB

NUSDAF LoI

Submitted to FRIB-PAC3

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

Giuseppe Verde¹, C. Agodi², M. Battaglieri⁹, M. Bondi¹, M. Cavallaro², M. Colonna², D. Gambacurta², A. Gottardo³, L. Lamia^{4,2}, S. Leoni^{5,6}, L. Marcucci⁷ S. Pirrone¹, G. Pizzone^{2,4}, P. Russotto², S. Valdrè⁸, J.J. Valiente³, M. Viviani⁷

on behalf of the ASFIN, CHIRONE, EPIC, GAMMA, JLAB12, NUCL-EX, NUMEN, MONSTRE and NUCSYS groups of INFN (see Appendix 3 for detailed list of institutes)

Kyle Brown¹⁰, Giordano Cerizza¹⁰, Zbigniew Chajecki¹¹, Alexandra Gade¹⁰, Dean Lee¹⁰, Artemis Spyrou¹⁰, Remco Zeger¹⁰

Local points of contact who agreed to collaborate and support these programs

¹INFN Catania, ²INFN Laboratorio Nazionali del Sud, ³INFN Laboratori Nazionali di Legnaro, ⁴University of Catania,
 ⁵University of Milan, ⁶INFN Milan, ⁷INFN Pisa, ⁸INFN Florence, ⁹INFN Genova
 ¹⁰FRIB, Michigan State University, ¹¹Western Michigan University

NUSDAF LoI

Submitted to FRIB-PAC3

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

```
Six scientific initiatives
  SYMEOS EoS and E_{sym} with HIC
  GASPEC \gamma spectroscopy and Collective excitations
  RIBDCE RIB-induced Double Charge Exchange
   NUSYC NUcleoSYnthesis and Clustering
   THEOF THEOretical physics @ FRIB
SYSTERSE SYnergic Stategy for future ElectRonics and Streaming
            rEadout solutions
```

NUSDAF LoI

Submitted to FRIB-PAC3

Letter of Intent

INFN-NUSDAF (INFN - Nuclear Structure, Dynamics and Astrophysics at FRIB)

```
Six scientific initiatives
  SYMEOS EoS and E_{sym} with HIC
  GASPEC \gamma spectroscopy and Collective excitations
  RIBDCE RIB-induced Double Charge Exchange
   NUSYC NUcleoSYnthesis and Clustering
   THEOF THEOretical physics @ FRIB
SYSTERSE SYnergic Stategy for future ElectRonics and Streaming
            rEadout solutions
```

FAZIA @ 23058

- As a first test, FAZIA will measure at FRIB coupled with other apparatuses
- We started a 2-weekly technical meeting cycle to prepare the setup

Mechanics

- The scattering chamber is too small to host FAZIA
- A "nose" will be build to host a FAZIA block at 80 cm distance from target
- Another block will measure in air, outside the chamber

DAQ and electronics

- FRIB experts received the full description of the FAZIA data flow protocol
- FAZIA data will be merged with other setups and handled by FRIB people
- independent acquisition to store FAZIA data in the old format

Developing a new detector...

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

Proposed solution in the LoI

- setups constituted by coupling INFN detector systems to equipment already operating at FRIB
- FAZIA upgrade without re-designing a new apparatus from scratch!
- complex setup which may introduce a bias

Developing a new detector...

- SYMEOS phase 2 will need new kind of detectors, optimized for FRIB energies
- Supra-saturation experiments will produce a broad variety of ejectiles:
 - Very energetic light particles from the fireball
 - Moderately excited fragments from spectator fragments
 - Very slow particles and fragment from spectators in peripheral collisions

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E E$ telescopes, and particle trackers
- Modular and portable setup, capable to measure fragments emitted in collisions at E/A from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)

Developing a new detector...

AZIMUTH solution

- A single apparatus with capabilities typical of correlators, $\Delta E E$ telescopes, and particle trackers
- Modular and portable setup, capable to measure fragments emitted in collisions at E/A from 15 to 500 MeV/u
- Less bias (also thanks to streaming readout acquisition)
- Project submitted to ERC-CoG 2025!

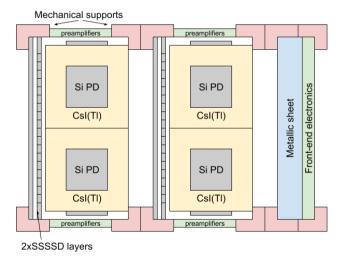
$AZIMUT\overline{H}\ solution$

A and Z Identification

the detector shall discriminate **in charge and mass** ions in a broad range of energies to guarantee the best isotopic discrimination ever achieved for a telescope-based detector

Modular

several telescope configurations shall be available, all of them with the **same connection standard** to front-end electronics and with the **same data acquisition protocol**


Universal

the apparatus shall be **multipurpose**, apt to measure multiple observables at the time, **couplable with other detectors**, and it shall also be used with a large variety of beams

Tracking Hodoscope

the telescopes shall implement **particle tracking** features through the layers in order to maximize the efficiency of light and energetic particle identification

The AZIMUTH block

The AZIMUTH detector module

- $100 \times 100 \,\mathrm{mm}$ SSSSD detector (100–500 $\mu\mathrm{m}$ thickness, 20 strips)
- 100×100 mm SSSSD detector (500–1000 μ m thickness, 20 strips)
- $4x 50 \times 50 \text{ mm Csl(TI)}$ crystals read by PD (500 mm thickness)

Alternative sensors and material investigation

- pixel detector first layer(s)
- heavier scintillating crystals (CdWO₄, GdTaO₄)
- NArCoS-like neutron sensitive plastic scintillators (EJ-276(G))^a
- crystal reading via SiPM
- ^aE. V. Pagano *et al.*, Front Phys **10**, (2023)

The AZIMUTH front-end module (FEM)

One single FEM per block

- a modern FPGA can handle all 132 ADC outputs
 - up to 3 detector modules made of 2x 20 Si-strip channels + 4 Csl channels
- ASICs will be considered, but discrete analog chains are preferred
- Less operations to be performed with respect to FAZIA
 - Streaming readout logic (asynchronous data flow to DAQ)
 - No online data processing
 - Nowadays paradigm: disk space is cheap, electronics is expensive!

Relaxing event-centered acquisition paradigm

- A simple clock distribution board outside scattering chamber
- Data from blocks directly to DAQ servers via Ethernet
- Offline (but real-time) data merging and reconstruction

Streaming readout

Traditional triggered DAQ VS Streaming Readout Cons: Digitize Digitize Only few information form the trigger. Trigger logic difficult to implement and debug, Local Local Not easy to adapt to different condition. Trigger Trigger Pros: Global Acquire It works reliably. Trigger Global Cons: Acquire Tilgered Trigger High data rate. New design. Streamine Build Process Pros: All channels can be part of the trigger. High level sophisticated trigger techniques. Store Store Software trigger.

Streaming readout

Streaming Readout Workshop SRO-XII

02–04 dic 2024 University of Tokyo Asia/Tokyo fuso orario Increased interest to SRO! CERN, EIC, **JLAB**, **FRIB**, and SPADI alliance (Japan) involved

MSU-JLab Streaming Data Acquisition System Meeting

12 febbraio 2025 JLAB US/Eastern fuso orario

AZIMUTH challenges

Main obstacles are related to fast particles energy loss profile

Energy straggling

energy loss of ions inside materials happens through a series of scatterings. The more interactions we have, the large variance in energy loss (straggling) we get a

^aS. Kumar and P. K. Diwan, J Radiat Res Appl Sci 8, 538 (2015)

Incomplete energy deposition (IED)

as ions react inside large volume crystals, or they scatter, punching-through the crystal surfaces, identification isn't feasible anymore b

^bC. Frosin et al., Nucl. Instrum. Meth. A **951**, 163018 (2020)

Tracking features

$Energy\ loss\ +\ position\ tracking$

- ullet "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSD (or pixel detectors)

A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A

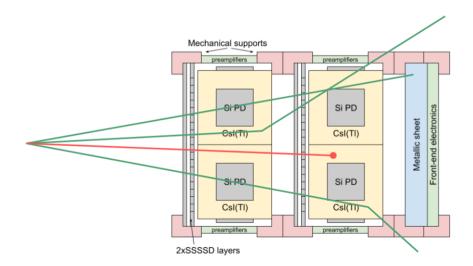
Tracking features

$Energy\ loss\ +\ position\ tracking$

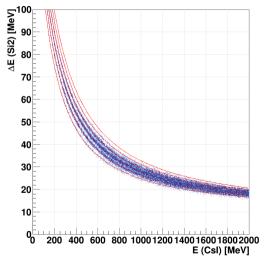
- "multiple ΔE " measurement to track particle energy loss among layers
- position tracking thanks to SSSD (or pixel detectors)

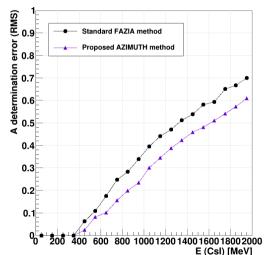
A lot of information per event to be analyzed by a neural network:

- training with simulation of reactions and elastic scattering inside sensors
- reconstruction of trajectories
- reconstruction of original particle E, Z, A


FAZIA

- 1x position (telescope)
- up to 3x partial energy release (Si-Si-Csl)


AZIMUTH


- up to 3x positions (3 stacked modules)
- up to 9x partial energy release (Si-Si-Csl-Si-Si-Csl)

Tracking features

Straggling compensation

Thysics case $Current\ detectors$ $HIC\ @\ FRIB$ AZIMUTH 000

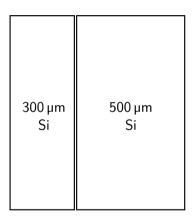
Summary and conclusions

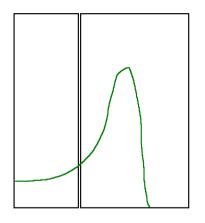
AZIMUTH

- **Telescope** approach + **tracking** features
- Position sensitive good for correlations
- Designed for elliptic flow measurements and invariant mass spectroscopy
- Good for FRIB, but also for FAIR (full setup) or low energy Spiral2, SPES, and LNS-FRAISE beams (1- or 2-module blocks)

Next steps

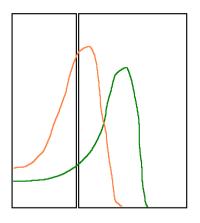
- Waiting for ERC-CoG project evaluation
- Improve the design after first FRIB experiments
- Strengthen sinergies among HIC collaborations
 - Great opportunities from NUSDAF Lol, E881_23 and AsyEOS-II experiments!



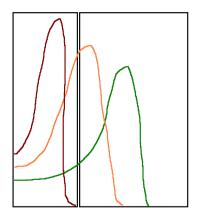

Thanks for your attention

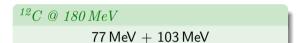
Backup slides

$Telescope\ concept$



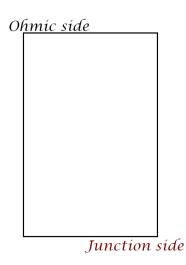

Telescope concept

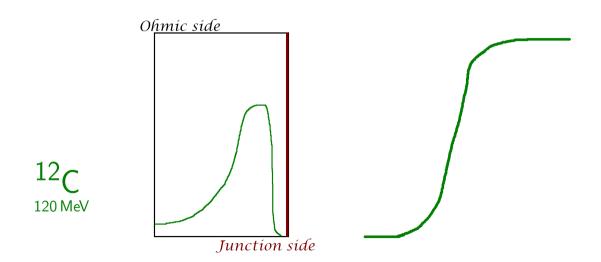

$Telescope\ concept$



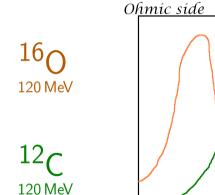
 $^{14}N @ 180 \, MeV$ $152 \, \mathrm{MeV} + 28 \, \mathrm{MeV}$

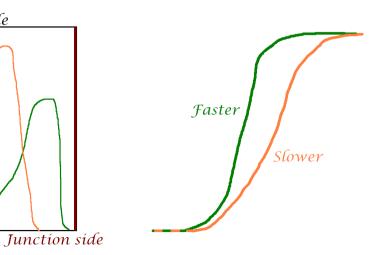
$Telescope\ concept$




 $^{14}N @ 180 \, MeV$ $152 \, \mathrm{MeV} + 28 \, \mathrm{MeV}$

¹⁶O @ 180 MeV 180 MeV + 0 MeV


Pulse Shape Analysis



Pulse Shape Analysis

Pulse Shape Analysis

$Identification \ methods$

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- identification threshold corresponding to $\sim 50\,\mu m$ penetration

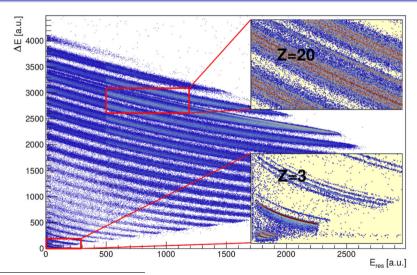
^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

Identification methods

$\Delta E - E$ correlation

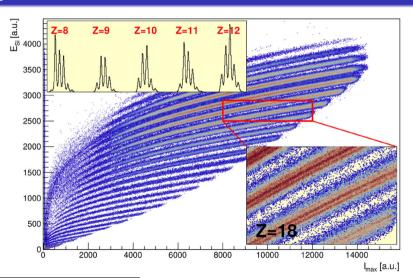
- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

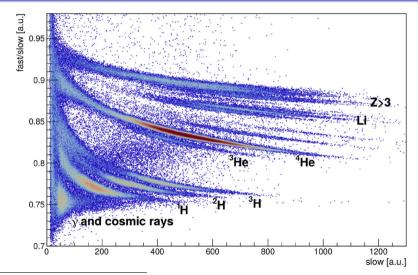

- charge collection depending on the impinging nuclei
- identification threshold corresponding to $\sim 50\,\mu m$ penetration

E-ToF correlation

- under implementation
- lowest identification threshold


^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

$\Delta E - E$ correlation


A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Pulse shape in Silicon sensors

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Pulse shape in CsI(Tl) scintillators

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

Thicker sensors with the same FAZIA electronics

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

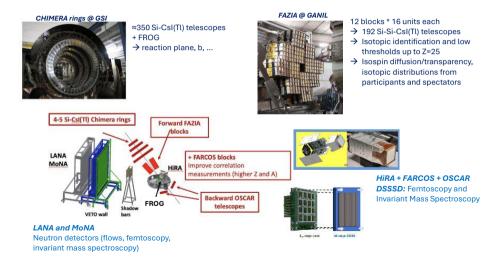
- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

Future challenges

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

Future challenges


Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

SYMEOS - phase 1

Short-term plans (coupling of existing detectors: FRIB + INFN)

