© 2008 Nature Publishing Group

LISA

A spaceborne observatory for detecting gravitational waves

H.Halloin, APC for the LISA France collaboration

Séminaire CPPM

Marseille, 12 mai 2025

The gravitational waves in a nutshell

2

What is a gravitational wave ?

- Elastic deformation of space-time metric
- Observable as a fluctuation of the distance between inertial masses

A new window on the Universe

- Observing the General Relativity in action !
- Unique knowledge on compact objects and fondamental physics
- Detectable at large distances

Orders of magnitude

M/2

The gravitational waves in 3 equations
 Gravitational system compactness

$$\frac{v^2}{c^2} \approx \frac{GM}{Rc^2} = \Xi < 1$$

GW Amplitude

 $h=2\frac{\Delta L}{L}\lesssim \frac{\Xi}{10^{-1}}\cdot \frac{M}{10^{6}M_{\odot}}\cdot \frac{10\ \text{Gpc}}{D_{l}}\quad nm/Mkm$

 \mathbf{Z}

GW Frequency

$$f \approx 14 \times \left(\frac{\Xi}{10^{-1}}\right)^{3/2} \cdot \frac{10^6 M_{\odot}}{M} \text{ mH}$$

GW astronomy has started !

.ISA

LISA a new class of instrument

.ISA

LISA Sensitivity

Tested with LISA Pathfinder

Testing drag-free flying: LISA Pathfinder

Principle scheme

TM2 position feedback

LISA Pathfinder - 03/12/15

http://www.esa.int/spaceinvideos/Videos/2015/12/LISA_Pathfinder_liftoff

Editors' Suggestion

ESA NASA

Featured in Physics

Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 µHz

LISA Sensitivity

Formation and evolution of compact binaries in our Galaxy

- White dwarfs, Neutron stars and stellar black holes
- Estimated population : ~10⁷
 - Galactic foreground
 - ~10⁴ individually detectable
 - A few 10s verification binaries

Formation and evolution of compact binaries

Mass distribution within the Galaxy

Origins, growth and fate of massive Black Holes

- Super massive black holes at the center of Galaxies
 - \checkmark 10⁴ to 10⁷ M_{\odot}

Growth

mechanisms

and merger

- ✓ Detectable up to z~12
- Potential EM counterparts up to z~3
- Nature and origin of seed BH at cosmic reionisation

 history of massive BH
 Accretion description during and after coalescence

Properties and environments of Black Holes

- ✓ 'Small' Black Hole (10² 10⁵ M_☉) orbiting a super-massive one (>10⁶ M_☉)
- Highly relativistic trajectory and GW signal
- Probe of the properties of quiescent massive Black Holes

 10^{0}

- Properties of massive BH (spin, mass)
 - Immediate environments of massive BH (gas, stars, etc.)
 - Constraints on formation channels for such binary systems

Study of the stellar mass black do the stellar mass black do the stellar ties more asses black do the stellar ties and the stellar ties and the stellar ties and the stellar ties and the stellar ties are the stellar ties and the stellar ties are the stellar ties and the stellar ties are the stellar ties

✓ Ground detectors observed BH up to ~140 M_☉
 ✓ ~10 000 detections, up to z~1, expected at LISA observation time

- Detectable years before coalescence in LISA
- Some will be observed while drifting into the ground detector bandwidth

- Properties of the environment of these BH
- Alerts for ground based detectors and multi-messenger observations

Fundamental nature of gravity and Black Holes

- Observation of intertidal trajectories in strong gravitational fields (e.g. EMRIs)
- Coalescence and ringdown of massive Black Holes
- Mapping of the spacetime metric close to the Black Hole
 - Are massive BH correctly described by the Kerr solution ?
 - Existence of horizonless compact sources ?
 - New light fields and « no hair » theorem
 - GW beyond the standard model and GR ?

Cosmology and stochastic backgrounds

Black Holes binaries as standard 'sirens'
 In conjunction with EM observations or statistical inference

- Astrophysical backgrounds, galactic and extragalactic
- Cosmological background from the early Universe
 - Expansion rate of the universe at high redshift
 - The Early Universe beyond standard model
 - Measurement / constraints on the background amplitudes
 - Large scale anisotropies of GW backgrounds

Main LISA sources

More infos ?

Read the LISA 'Red Book' : <u>https://www.cosmos.esa.int/web/lisa/lisa-redbook</u>

French contributions to LISA

CORA AIRBUS ThalesAlenia These / Leonardo Company Space

3rd ESA 'Large' Mission

- Following LISA Pathfinder 2015-2017
- Selected in June 2017
- Adopted in January 2024
- Expected launch in 2035
- ~1900 Consortium Members

3 major contributions for France

- Distributed Data Processing Center
- Ground test and validation of the LISA metrology 'Core'
- 'Performance & Operations'

17 French research institutes on LISA APC, ARTEMIS/OCA, CNES, CPPM, Fresnel, IAP, IP2I, IPhT, IRAP, IRFU, L2IT, LAM, LPCC, LPC2E, LUTH, ONERA, SYRTE/OBSPM

Overview of the French contributions

 Broad and continuous coverage from instrument development to GW science

Main LISA development milestones

Event	From	То	Comment
Phase 0 (Concept study)	Jul 2017	Nov 2017	Completed
Mission Definition review (MDR)	27 Nov 2017		Successful
Phase A (Feasibility study)	June 2018	Oct 2020	Completed
Mission Consolidation review (MCR)	22 Oct. 2019		Successful
Extended Phase A	Oct 2020	Dec 2021	Completed
Mission Formulation review (MFR)	End 2021		Successful
Phase B1 (Preliminary Definition with concurrent Prime Contractors)	Jan 2022	Dec 2023	Completed
Mission adoption review (MAR)	Nov. 2023		Successful
Mission adoption (by ESA SPC)	Jan. 2024		Successful
Phase B2 (Preliminary Definition with a single Prime Contractor)	Q1 2024	April 2027	On-going
Mission Preliminary Design review	April 2027	and the	
Phase C (Detailed Definition)	Q3 2027	Q4 2030	
Mission Critical Design review (CDR)	Jan. 2031		
Phase D (production and Verification)	Q1 2031	2034/2035	
Flight Acceptance Review (FAR) and Launch	2034/2035		
Transfer & commissioning	1.5/0.5 years		
Operations	4.5 years		7.5 years of science mission
Extended mission	Up to 3 more years		

LISA ground segment

${\boldsymbol{\checkmark}} SC \to L0$

- Packets extraction, removal of corrupted data, timeordering …
- Processed by ESA

ISA

\ll L0 \rightarrow L0.5

- Calibrated, de-biased, synchronized data
- Processed by ESA with support of instruments teams

\checkmark L0.5 \rightarrow L1

Hubert Halloin - The LISA mission - CPPM - 12/05/2025

- Alerts
- Calibrated and noise-corrected TDI streams
 Processed by ESA with TDI algorithms from the scientific community

\checkmark L1 \rightarrow L2

- Global fit': Sources parameters extraction
- Processed by the scientific Data Processing Center

\checkmark L2 \rightarrow L3

- Catalogs of consolidated data + L1 residuals
- Processed by the scientific Data Processing Center
- Released by ESA

From LISA Data Challenges to DDPC deliverables

- LISA Data Challenges :
 - Foster R&D on this challenging signal dominated analysis
 - Support ESA reviews on that topic
 - Get cost estimate and DDPC design drivers

- Challenges
 - LDC 1a Radler / 1b Yorsh
 - Beginner's data set with individual sources
 - LDC 2a Sangria
 - 2/3 global-fit prototypes for first enchilada (GB+MBHB) challenge
 - LDC 2b Spritz
 - Dealing with gaps and glitches

24

Testing LISA on ground

- Main objective : validate the metrological concept of LISA
 - Critical functionalities
 - Optical path length stability
 - Wavefront errors and alignment accuracies

Testing LISA on ground

JEANS Zerodur Demonstration Bench

Zerodur Demonstration Bench

- Thermo-elastic noise
 Photoreceivers Chain Noise
 Straylight
- Synchronisation biases
- Beam Intensity noise
- Laser frequency noise
- Tilt-to-length couplings
- Acquisition & sampling noises
- Seismic & acoustic noises

Performances obtenues

Conclusion

 LISA is an ambitious and technically challenging mission for detecting GW from space
 Selected for flight in 20234/2035, now in phase B2

 Many of the key technologies have been demonstrated with LISA Pathfinder

I7 French institutes contribute (today) to the mission development

Instrument EM and QM performance tests on ground

- Development of the Distributed Data Processing center
- Preparation to in-flight operations and scientific exploitation

The development of the DDPC and ground support equipments has started

Some LISA enthusiasts...

© 2008 Nature Publishing Group

Extra

Time Delay Interferometry

.ISA

Time Delay Interferometry

Combination of delayed recorded data streams to cancel out propagated laser noises

Requires accurate knowledge of the S/C to S/C distance

Noise reduction factor ~7 orders of magnitude

Numerically and experimentally demonstrated

ials Measured

— at the S/C

+ /////