

Identify neutral hadrons using ECL at Belle II experiment

Y.-T. Chen, J.-H. Su, M.-Z. Wang, J.-G. Shiu (NTU)

- Belle II Detector
- Partical Identification
- \bullet ECL Standalone K_L^0/n Identification
- Application in Physics Analyses
- Summary

PRD 108 (2023) 112007 BELLE2-NOTE-TE-2024-006 BELLE2-NOTE-TE-2024-006

Belle II Detector

(without EKLM) $2019\sim$, target $6x10^{35}~cm^{-2}s^{-1}$ and $50~ab^{-1}$ up to 2024, $5.1x10^{34}~cm^{-2}s^{-1}$ and $575~fb^{-1}$

KLM(for μ , K_L^0 PID): $25^{\circ} \sim 155^{\circ}$ baseline reference

ECL(for e, γ): 12.4° ~ 155° 8736 Cs(Tl) crystals 16.1 X_0 0.68 λ_0 angular resolution ~ O(1) mrad

new readout with waveform sampling

→ offline pulse shape discrimination (PSD)

CDC: 17° ~ 150° charged track veto

TPS 2025 O7-PF [2]

Long long ago, there was a study ...

Motivation

- more statistics than previous result (Belle II 363 fb⁻¹ V.S. CLEO 9.1 fb⁻¹)
- \overline{n} direct detection from EM calorimeter
- validation of CLEO result and color-suppression
- potential of first measurement

from PDG 2024	color-favored		color-suppressed	
$B^0 \to DN\overline{N}$	$B^0 \to D^- p \overline{n}$ $(?? \pm ?) \times 10^{-4}$	$B^0 \to D^{*-} p \overline{n}$ $(14 \pm 4) \times 10^{-4}$	$B^0 \to \overline{D}{}^0 p \overline{p}$ $(1.04 \pm 0.07) \times 10^{-4}$	$B^0 \to \overline{D}^{*0} p \overline{p}$ (0.99 ± 0.11) × 10 ⁻⁴
$B^0 \to D\pi$	$B^0 \to D^- \pi^+$ (25.1 ± 0.8) × 10 ⁻⁴	$B^0 \to D^{*-} \pi^+$ $(26.6 \pm 0.7) \times 10^{-4}$	$B^0 \to \overline{D}{}^0 \pi^0$ (2.67 ± 0.09) × 10 ⁻⁴	$B^0 \to \overline{D}^{*0} \pi^0$ (2.2 ± 0.6) × 10 ⁻⁴

TPS 2025 O7-PF [3]

Particle Identification

- Particle identification (PID) is the procedure/algorithm using the detector measured information to recognize a particle's identity → likelihood.
 - ➤ It is one of the essential part to reconstruct a physics event from detected signals.
- In Belle II Analysis Software Framework (BASF2), PID is implemented for
 - > standard charged: e, μ , π^{\pm} , K^{\pm} , p/d,
 - > standard neutral: K_L^0 (KLM), γ
- How about ...
 - \triangleright feasibility to use ECL to do K_L^0 PID?
 - $\rightarrow n/\overline{n}$? (left behind since Belle).

For $K_L{}^0$

Q1: Does K_L^0 leave enough signal inside ECL?

 \rightarrow It is a hadron, so

Q2: If yes, could we distinguish it from others?

→ Could discriminative AI help?

TPS 2025 O7-PF [5]

K_L^0 Simulation leaves no hit in PXD, SVD, and CDC

→ how about ECL and KLM?

TPS 2025 O7-PF [6]

Simulation based on our best knowledge: acceptance at KLM standalone ~ 50%

Does K_L^0 leave enough signal inside ECL? Ans. to Q1: Probably YES!!

ECL Standalone K_L^0/n Identification

Using fastBDT for the classifier training

- MC studies using signal and background samples.
- The truth matching for neutral clusters in Belle II software does not work 100%.
 We use only ones with truth matching for training.
- We leave *n* behind at this moment.

TPS 2025 O7-PF [8]

K_L^0 Classifier Training (MC study)

Ans. to Q2: YES?!

BELLE2-NOTE-TE-2024-006

training results: training/test samples consistent

Calibration (K_L^{θ})

• Calibration with $e^+e^- \rightarrow \phi (\rightarrow K_L^0 K_S^0) \gamma$ (standard missing momentum method)

 γ : 4.5 < E_{γ}^{*} < 5.4 GeV

 K_L^0 : $\alpha < 8^\circ$

The K_L^0 mass distribution in data.

> The correction factor is calculated in different $\cos\theta$ and P at different K_L^0 cut. Overall correction is $\epsilon_{\text{data}}/\epsilon_{\text{MC}} \sim (82.0 \pm 3.6)\%$

n Classifier Training (MC study)

other neutrals 1 fb⁻¹ (stone)

neutral clusterw/ truth matching*

training variables

0.8

All

n

0.6

K

γ EL

0.4

γ H

other

other

0.2

0.4

0.6

0.8

NVA

clusterPSDMVA
clusterE
clusterLAT
clusterE9E21
clusterE1E9
clusterZernikeMVA
clusterZernikeMoment40
clusterZernikeMoment51

* NOTE

The truth matching for neutral clusters in Belle II software does not work 100%.

The results demonstrate only the classification performance.

The exact signal efficiency should be checked in physics analysis case by case.

BELLE2-NOTE-TE-2020-016

training results: training/test samples consistent

TPS 2025 O7-PF

n Classifier Training (MC study)

n 100 fb⁻¹ (candy) other neutrals 1 fb⁻¹ (stone)

neutral clusterw/ truth matching*

training variables

clusterPSDMVA
clusterE
clusterLAT
clusterE9E21
clusterE1E9
clusterZernikeMVA
clusterZernikeMoment40
clusterZernikeMoment51

* NOTE

The truth matching for neutral clusters in Belle II software does not work 100%.

The results demonstrate only the classification performance.

The exact signal efficiency should be checked in physics analysis case by case.

A similar study has been done for Belle data by Yuan-Ru Lin. Belle Note BN1592

BELLE2-NOTE-TE-2020-016

training results: training/test samples consistent

TPS 2025 O7-PF [12]

Calibration (n)

- Using $\overline{\Lambda} \to \overline{p} \pi^+$ for calibration
 - \triangleright Use p to mimic n, extrapolate p to ECL (treat charged cluster as a neutral one)
 - $\rightarrow p$ and \overline{n} have similar nuclear interaction cross section (P > 0.4 GeV/c)
 - $ightharpoonup \overline{p}$ and \overline{n} have same simulation package in GEANT (3/4)
 - \triangleright Correction of \overline{p} efficiency by $\overline{A} \rightarrow \overline{p} \pi^+$ between MC and real data
 - \triangleright Relying on MC for additional correction between p and n

- Systematic uncertainty
 - > Detection correction (related to ECL detector and reconstruction software).
 - > Selection correction (related to *n* PID).
 - > Methodology.
 - > The correction factor is calculated in different $\cos\theta$ and P at different K_L^0 cut. Overall correction is $\epsilon_{\text{data}}/\epsilon_{\text{MC}} \sim (84.0 \pm 3.0)\%$

Application in Physics Analysis

- Suitable for decays of mom(short lived) → one neutral daughter + charged daughter(s)
- ECL cluster center from the IP: the flying direction of the neutral daughter.
- Applying mom(mass) to constrain the neutral daughter's momentum magnitude.
 - ➤ This approach could apply not only to B decays.
- Check the signal peaking of ΔE^* or P_m^* (mom's P in c.m.).

(For τ as the mom, $P_{\tau}^* \sim 5 \text{ GeV/c}$)

TPS 2025 O7-PF [14]

Application in Physics Analysis

- Check with $B^0 \to J/\psi(\to \mu^+\mu^-)K_L^0$ using LS1 data (362 fb⁻¹ before 2024).
 - good muon
 - $> 3.06 \text{ GeV/c}^2 < J/\psi \text{ mass} < 3.12 \text{ GeV/c}^2$
 - > K_L^0 by ECL standalone, MVA > 0.8
- Results in signal and branching fraction: $(8.85 \pm 0.62) \times 10^{-4}$ (PDG: $(8.91 \pm 0.21) \times 10^{-4}$)
- Overlapping with K_L^0 (KLM alone) is very small.

* First publication: K.-N. Chu et al. (Belle), "Study of $B^+ \rightarrow p \ n \ \pi^0$ ", PRD 108 (2023) 112007

Summary

- Belle II experiment has started physics commissioning since 2019
- We have developed ECL standalone K_L^0/n PID using machine learning techniques at Belle II
 - $ightharpoonup K_L^0$ PID almost double the total K_L^0 efficiency at Belle II
 - \triangleright *n* PID offers a tool for physics analysis
- These tools can apply to tau physics, too, especially for BSM
- First paper using Belle data is published in 2023
- There are new studies on $K_L^0/n(n)$ ongoing

TPS 2025 O7-PF [17]