New methods to boost sensitivity in the search for $B^0 \to \phi \phi$

Mary Richardson-Slipper

Rencontres du Vietnam

Modern Methods in Experiment and Analysis

The search for $B^0 \to \phi \phi$: recap from Monday

Search for $B^0 \to \phi \phi$

- Complementary study
- $\bar{b}d \rightarrow s\bar{s}$ annihilation: loop, Cabibbo and OZI suppressed
- Branching fraction may be enhanced in many scenarios: new physics, ω – ϕ mixing...
- Predictions at $\sim 10^{-8}$ level vary by order of magnitude
- Leading-order non-factorizable contributions to $B^0 \to \phi \phi$ are higher-order corrections to $B_s^0 \to \phi \phi$

LHCb-PAPER-2025-018, submitted to JHEP

18.08.25

Mary Richardson-Slipper (Cambridge)

New limit set on the branching fraction at $\mathcal{B}(B^0 \to \phi \phi) < 1.3 \times 10^{-8} 90\% \text{ C.L.}$

- Charmless $P \to VV$
- relates to golden mode $B_s^0 \to \phi \phi$
- theory predictions very varied

Mary Richardson-Slipper (Cambridge)

C.-D. Lu et. al. (2005)

LHCb-PAPER-2025-018, submitted to JHEP

18.08.25

Analysis procedure

Select candidates:

- Pair charged kaons to form ϕ mesons
- Pair ϕ mesons consistent from $B_{(s)}^0$

Fit the $K^+K^-K^+K^-$ invariant mass distribution and look for significant peak at B^0 mass, using $B_s^0 \to \phi \phi$ as control mode

LHCb-PAPER-2025-018, submitted to JHEP

Lots of background can mimic the $B_{(s)}^0 \to \phi \phi$ — how can we search for a tiny signal on top of the backgrounds?

Lots of background can mimic the $B_{(s)}^0 \to \phi \phi$ — how can we search for a tiny signal on top of the backgrounds?

If proton looks like a kaon – looks like the same final state

Lots of background can mimic the $B_{(s)}^0 \to \phi \phi$ — how can we search for a tiny signal on top of the backgrounds?

Lots of background can mimic the $B_{(s)}^0 \to \phi \phi$ — how can we search for a tiny signal on top of the backgrounds?

Can get pairs of ϕ mesons from different D_s^{\pm} decays!

How can we use the fact we get lots of ϕ mesons from D_s^+ decays?

- High branching fraction of $D_s^+ \to \phi X$
- Easy to get lots of detached ϕ mesons that can be **incorrectly paired together** to form a B candidate
- Look at data sideband, look at ϕ mesons individually and see if it **forms a vertex with a pion**, as example
- Use this to train a classifier to target these – discriminating variables are those relating to vertex quality

Combinatorial background reduction

- Two types of classifiers
 - One targets D_s^+ decays specifically
 - One targets combinatorial background in general
- Allows to target the specific properties of each category
- Provides much better control of the combinatorial background

Background from $B_s^0 \to \phi \phi$

- Wait, the control mode is a background? Yes.
- Due to momentum resolution, the $B_s^0 \to \phi \phi$ and $B^0 \to \phi \phi$ distributions **overlap**
- In particular poorly reconstructed kaon tracks will create tails in the distributions
- Poorly reconstructed kaons are those that **decay in flight** or undergo **hadronic interactions**

Background from $B_s^0 \to \phi \phi$

Hasn't interacted, nice track

Something happened – kinked track

If this happens before the tracking stations, **poorer track reconstruction** and **worse determination** of *B* mass as a result

Background from $B_s^0 \to \phi \phi$

Tails of $B_s^0 \to \phi \phi$ much reduced using this technique

Excellent separation between interacted and non-interacted kaons

 $B_s^0 \to \phi \phi$ events in region of B^0 mass much reduced

Results

- Don't see a signal
- Set **new upper limit** on the branching fraction factor of 2 better than the previous result from LHCb (Run 1 + 2016)
- This is a factor of **1.8 times** more than increase in statistics alone!

Run 2 data on suppressed *y*-axis to show low levels of background

Summary

- We carefully studied the various background contributions that affect the sensitivity to potential $B^0 \to \phi \phi$ signal
- Use multivariate classifiers to target many specific contributions to the invariant mass distribution
- By using these techniques improve sensitivity by additional factor of 1.8
- We are always looking for ways of squeezing the best results from our data!
- Interest from LHCb community to use the kaon interaction technique to improve other analyses where this plays a part

